快活林资源网 Design By www.csstdc.com

前言

"color: #ff0000">1. BF算法

"application/x-tex">Bruce-ForceBruce"application/x-tex">S=ABACABABS=ABACABAB,模式串T=ABABT=ABABT=ABAB,每趟匹配失败后,主串S指针回溯,模式串指针回到头部,然后再次匹配,过程如下:

浅谈Python描述数据结构之KMP篇

def BF(substrS, substrT):
  if len(substrT) > len(substrS):
    return -1
  j = 0
  t = 0
  while j < len(substrS) and t < len(substrT):
    if substrT[t] == substrS[j]:
      j += 1
      t += 1
    else:
      j = j - t + 1
      t = 0
  if t == len(substrT):
    return j - t
  else:
    return -1

2. KMP算法

"normal">.E.KnuthJ.H.MorrisV.R.PrattD.E.Knuth、J.H.Morris、V.R.PrattD.E.Knuth、J.H.Morris、V.R.Pratt同时发现的,又被称为克努特-莫里斯-普拉特算法。该算法的基本思路就是在匹配失败后,无需回到主串和模式串最近一次开始比较的位置,而是在不改变主串已经匹配到的位置的前提下,根据已经匹配的部分字符,从模式串的某一位置开始继续进行串的模式匹配。

"normal">"ABA""ABA""ABA",其前缀与后缀都是"A""A""A",这个时候我们就不需要执行第二次匹配了,因为第一次就已经匹配过了,所以可以跳过第二次匹配,直接进行第三次匹配,即前缀位置移到后缀位置,主串指针无需回溯,并继续从该位开始比较。

"false">(Partial(Partial(Partial Match,PM)Match,PM)Match,PM):字符串的前缀和后缀的最长相等前后缀长度。
"normal">′a′'a'′a′的前缀和后缀都为空集,则最长公共前后缀长度为0;ab′'ab'′ab′的前缀为{a}\{a\}{a},后缀为{b}\{b\}{b},则最长公共前后缀为空集,其长度长度为0;aba′'aba'′aba′的前缀为{a,ab}\{a,ab\}{a,ab},后缀为{a,ba}\{a,ba\}{a,ba},则最长公共前后缀为{a}\{a\}{a},其长度长度为1;abab′'abab'′abab′的前缀为{a,ab,aba}\{a,ab,aba\}{a,ab,aba},后缀为{b,ab,bab}\{b,ab,bab\}{b,ab,bab},则最长公共前后缀为{ab}\{ab\}{ab},其长度长度为2。
"text-align: center">浅谈Python描述数据结构之KMP篇"text-align: left">"text-align: center">浅谈Python描述数据结构之KMP篇"text-align: left">"normal">"A""A""A",即最长公共前后缀为空集,其长度为0,则下次匹配时将模式串1号位与主串的当前位进行比较。next[1]=0

浅谈Python描述数据结构之KMP篇

"normal">"AB""AB""AB",即最长公共前后缀为空集,其长度为0,则下次匹配时将模式串1号位与主串的当前位进行比较。next[2]=0

浅谈Python描述数据结构之KMP篇"text-align: left">"normal">"ABA""ABA""ABA",即最长公共前后缀为"A""A""A",其长度为1,则下次匹配时将前缀位置移到后缀位置,即模式串2号位与主串的当前位进行比较。next[3]=1

浅谈Python描述数据结构之KMP篇

"normal">"ABAA""ABAA""ABAA",即最长公共前后缀为"A""A""A",其长度为1,则下次匹配时将前缀位置移到后缀位置,即模式串2号位与主串的当前位进行比较。next[4]=1

浅谈Python描述数据结构之KMP篇

"normal">"ABAAB""ABAAB""ABAAB",即最长公共前后缀为"AB""AB""AB",其长度为2,则下次匹配时将前缀位置移到后缀位置,即模式串3号位与主串的当前位进行比较。next[5]=2

浅谈Python描述数据结构之KMP篇

"normal">"ABAABC""ABAABC""ABAABC",即最长公共前后缀为空集,其长度为0,则下次匹配时将模式串1号位与主串的当前位进行比较。next[6]=0

浅谈Python描述数据结构之KMP篇"text-align: left">如果模式串8号位与主串当前位不匹配,找最长公共前后缀,指针前面的子串为"ABAABCA""ABAABCA""ABAABCA",即最长公共前后缀为"A""A""A",其长度为1,则下次匹配时将模式串2号位与主串的当前位进行比较。next[7]=1

"text-align: left"> 位编号 1 2 3 4 5 6 7 8 索引 0 1 2 3 4 5 6 7 模式串 A B A A B C A C next -1 0 0 1 1 2 0 1

"text-align: center">浅谈Python描述数据结构之KMP篇"text-align: left">"application/x-tex">T_j=T_tTj"false">[j+1]=t+1=next[j]+1next[j+1]=t+1=next[j]+1next[j+1]=t+1=next[j]+1。这个时候j=4,t=1j=4,t=1j=4,t=1(索引);

浅谈Python描述数据结构之KMP篇

"normal">≠TtT_j \neq T_tTj"application/x-tex">tt位置与主串(并不是真正的主串)不匹配,则将下面的那个模式串移动到next[t]next[t]next[t]位置进行比较,即t=next[t]t=next[t]t=next[t],直到Tj=TtT_j=T_tTj"application/x-tex">t=-1t="application/x-tex">t=-1t="false">[j+1]=0next[j+1]=0next[j+1]=0。这里就是t=next[2]=0t=next[2]=0t=next[2]=0,即下次匹配时,模式串的第1位与主串当前位进行比较。

"htmlcode">

def getNext(substrT):
  next_list = [-1 for i in range(len(substrT))]
  j = 0
  t = -1
  while j < len(substrT) - 1:
    if t == -1 or substrT[j] == substrT[t]:
      j += 1
      t += 1
      # Tj=Tt, 则可以到的next[j+1]=t+1
      next_list[j] = t
    else:
      # Tj!=Tt, 模式串T索引为t的字符与当前位进行匹配
      t = next_list[t]
  return next_list


def KMP(substrS, substrT, next_list):
  count = 0
  j = 0
  t = 0
  while j < len(substrS) and t < len(substrT):
    if substrS[j] == substrT[t] or t == -1:
      # t == -1目的就是第一位匹配失败时
      # 主串位置加1, 匹配串回到第一个位置(索引为0)
      # 匹配成功, 主串和模式串指针都后移一位
      j += 1
      t += 1
    else:
      # 匹配失败, 模式串索引为t的字符与当前位进行比较
      count += 1
      t = next_list[t]
  if t == len(substrT):
    # 这里返回的是索引
    return j - t, count+1
  else:
    return -1, count+1

3. KMP算法优化版

"application/x-tex">S=AAABAAAABS=AAABAAAAB,模式串T=AAAABT=AAAABT=AAAAB,按照KMP算法,匹配过程如下:

浅谈Python描述数据结构之KMP篇
"text-align: left">"application/x-tex">SS的4号位为模式串TTT的4号位就已经比较了,且T3S3T_3 \neq S_3T3"application/x-tex">TT的4号位与其1、2、3号位的字符一样,即T3=T2=T1=T0S3T_3=T_2=T_1=T_0 \neq S_3T3"text-align: left">"normal">≠SjT_j \neq S_jTj"false">[j]T_{next[j]}Tnext[j]"application/x-tex">S_jSj"false">[j]=TjT_{next[j]} = T_jTnext[j]"application/x-tex">T_jTj"application/x-tex">S_jSj"false">[j]next[j]next[j]的值直接赋值为-1,即遇到这种情况,主串与模式串都从下一位开始比较。

"false">[j]=TjT_{next[j]} = T_jTnext[j]"false">[\Big[[next[j]]\Big]],直至两者不相等为止(相当于了迭代)。在代码里面实现就是,如果某个字符已经相等或者第一个next[j]数组值为-1(即t="application/x-tex">t=-1t="htmlcode">

def getNextval(substrT):
  nextval_list = [-1 for i in range(len(substrT))]
  j = 0
  t = -1
  while j < len(substrT) - 1:
    if t == -1 or substrT[j] == substrT[t]:
      j += 1
      t += 1
      if substrT[j] != substrT[t]:
        # Tj=Tt, 但T(j+1)!=T(t+1), 这个就和next数组计算时是一样的
        # 可以得到nextval[j+1]=t+1
        nextval_list[j] = t
      else:
        # Tj=Tt, 且T(j+1)==T(t+1), 这个就是next数组需要更新的
        # nextval[j+1]=上一次的nextval_list[t]
        nextval_list[j] = nextval_list[t]
    else:
      # 匹配失败, 模式串索引为t的字符与当前位进行比较
      t = nextval_list[t]
  return nextval_list

"htmlcode">

if __name__ == '__main__':
  S1 = 'ABACABAB'
  T1 = 'ABAB'
  S2 = 'AAABAAAAB'
  T2 = 'AAAAB'

  print('*' * 50)
  print('主串S={0}与模式串T={1}进行匹配'.format(S1, T1))

  print('{:*^25}'.format('KMP'))
  next_list1 = getNext(T1)
  print('next数组为: {}'.format(next_list1))
  index1_1, count1_1 = KMP(S1, T1, next_list1)
  print('匹配到的位置(索引): {}, 匹配次数: {}'.format(index1_1, count1_1))

  print('{:*^25}'.format('KMP优化版'))
  nextval_list1 = getNextval(T1)
  print('nextval数组为: {}'.format(nextval_list1))
  index1_2, count1_2 = KMP(S1, T1, nextval_list1)
  print('匹配到的位置(索引): {}, 匹配次数: {}'.format(index1_2, count1_2))

  print('')
  print('*' * 50)
  print('主串S={0}与模式串T={1}进行匹配'.format(S2, T2))

  print('{:*^25}'.format('KMP'))
  next_list2 = getNext(T2)
  print('next数组为: {}'.format(next_list2))
  index2_1, count2_1 = KMP(S2, T2, next_list2)
  print('匹配到的位置(索引): {}, 匹配次数: {}'.format(index2_1, count2_1))

  print('{:*^25}'.format('KMP优化版'))
  nextval_list2 = getNextval(T2)
  print('nextval数组为: {}'.format(nextval_list2))
  index2_2, count2_2 = KMP(S2, T2, nextval_list2)
  print('匹配到的位置(索引): {}, 匹配次数: {}'.format(index2_2, count2_2))

"text-align: center">浅谈Python描述数据结构之KMP篇

"application/x-tex">S=ABACABABS=ABACABAB与模式串T=ABABT=ABABT=ABAB匹配时需要4次,主串S=AAABAAAABS=AAABAAAABS=AAABAAAAB与模式串T=AAAABT=AAAABT=AAAAB匹配时需要5次;修正next数组后,主串S=ABACABABS=ABACABABS=ABACABAB与模式串T=ABABT=ABABT=ABAB匹配时需要3次,主串S=AAABAAAABS=AAABAAAABS=AAABAAAAB与模式串T=AAAABT=AAAABT=AAAAB匹配时仅需要2次。

结束语

  在写本篇博客之前也是反复看参考书、视频,边画图边去理解它,这篇博客也是反复修改了好几次,最终算是把KMP解决掉了,有关字符串知识的复习也算是基本结束,下面就是刷题了(虽然在LeetCode做过了几道题)。

快活林资源网 Design By www.csstdc.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
快活林资源网 Design By www.csstdc.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?