如果在运行python脚本时需要传入一些参数,例如gpus与batch_size,可以使用如下三种方式。
python script.py 0,1,2 10 python script.py -gpus=0,1,2 --batch-size=10 python script.py -gpus=0,1,2 --batch_size=10
这三种格式对应不同的参数解析方式,分别为sys.argv, argparse, tf.app.run, 前两者是python自带的功能,最后一个是tensorflow提供的便捷方式(只是在命令行执行时看上去跟第二个相同,源码部分的区别见下)。
sys.argv
sys模块是很常用的模块, 它封装了与python解释器相关的数据,例如sys.modules里面有已经加载了的所有模块信息,
sys.path里面是PYTHONPATH的内容,而sys.argv则封装了传入的参数数据。
使用sys.argv接收上面第一个命令中包含的参数方式如下:
import sys gpus = sys.argv[1] #gpus = [int(gpus.split(','))] batch_size = sys.argv[2] print(gpus, type(gpus)) print(batch_size, type(batch_size))
执行结果:
D:\projects\Pycharm Projects\some-toys\something_else>python argv_test.py 1,0,2 10 1,0,2 <class 'str'> 10 <class 'str'>
argparse
import argparse parser = argparse.ArgumentParser(description='manual to this script') parser.add_argument('--gpus', type=str, default = None) parser.add_argument('--batch-size', type=int, default=32) args = parser.parse_args() print(args.gpus, type(args.gpus)) print(args.batch_size, type(args.batch_size))
执行结果:
D:\projects\Pycharm Projects\some-toys\something_else>python argv_test.py --gpus=0,1,2 --batch-size=20 0,1,2 <class 'str'> 20 <class 'int'>
需要注意的是,脚本运行命令python script.py --gpus=0,1,2 --batch-size=10中的batch-size会被自动解析成batch_size.
parser.add_argument 方法的type参数理论上可以是任何合法的类型, 但有些参数传入格式比较麻烦,例如list,所以一般使用bool, int, str, float这些基本类型就行了,更复杂的需求可以通过str传入,然后手动解析。bool类型的解析比较特殊,传入任何值都会被解析成True,传入空值时才为False
python script.py --bool-val=0 # args.bool_val=True python script.py --bool-val=False # args.bool_val=True python script.py --bool-val= # args.bool_val=什么都不写False
通过这个方法还能指定命令的帮助信息。具体请看API文档:https://docs.python.org/2/library/argparse.html
tf.app.run
tensorflow也提供了一种方便的解析方式。
脚本的执行命令为:
python script.py -gpus=0,1,2 --batch_size=10
对应的python代码为:
import tensorflow as tf tf.app.flags.DEFINE_string('gpus', None, 'gpus to use') tf.app.flags.DEFINE_integer('batch_size', 5, 'batch size') FLAGS = tf.app.flags.FLAGS def main(_): print FLAGS.gpus print FLAGS.batch_size if __name__=="__main__": tf.app.run()
有几点需要注意:
tensorflow只提供以下几种方法:
- tf.app.flags.DEFINE_string,
- tf.app.flags.DEFINE_integer,
- tf.app.flags.DEFINE_boolean,
- tf.app.flags.DEFINE_float
四种方法,分别对应str, int,bool,float类型的参数。这里对bool的解析比较严格,传入1会被解析成True,其余任何值都会被解析成False。
脚本中需要定义一个接收一个参数的main方法:def main(_):,这个传入的参数是脚本名,一般用不到, 所以用下划线接收。
以batch_size参数为例,传入这个参数时使用的名称为--batch_size,也就是说,中划线不会像在argparse 中一样被解析成下划线。
tf.app.run()会寻找并执行入口脚本的main方法。也只有在执行了tf.app.run()之后才能从FLAGS中取出参数。
从它的签名来看,它也是可以自己指定需要执行的方法的,不一定非得叫main:
run( main=None, argv=None )
tf.app.flags只是对argpars的简单封装。代码见
https://github.com/tensorflow/tensorflow/blob/r1.2/tensorflow/python/platform/flags.py
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]