快活林资源网 Design By www.csstdc.com
基于python+OpenCV的车牌号码识别,供大家参考,具体内容如下
车牌识别行业已具备一定的市场规模,在电子警察、公路卡口、停车场、商业管理、汽修服务等领域已取得了部分应用。一个典型的车辆牌照识别系统一般包括以下4个部分:车辆图像获取、车牌定位、车牌字符分割和车牌字符识别
1、车牌定位的主要工作是从获取的车辆图像中找到汽车牌照所在位置,并把车牌从该区域中准确地分割出来
这里所采用的是利用车牌的颜色(黄色、蓝色、绿色) 来进行定位
#定位车牌 def color_position(img,output_path): colors = [([26,43,46], [34,255,255]), # 黄色 ([100,43,46], [124,255,255]), # 蓝色 ([35, 43, 46], [77, 255, 255]) # 绿色 ] hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) for (lower, upper) in colors: lower = np.array(lower, dtype="uint8") # 颜色下限 upper = np.array(upper, dtype="uint8") # 颜色上限 # 根据阈值找到对应的颜色 mask = cv2.inRange(hsv, lowerb=lower, upperb=upper) output = cv2.bitwise_and(img, img, mask=mask) k = mark_zone_color(output,output_path) if k==1: return 1 # 展示图片 #cv2.imshow("image", img) #cv2.imshow("image-color", output) #cv2.waitKey(0) return 0
2、将车牌提取出来
def mark_zone_color(src_img,output_img): #根据颜色在原始图像上标记 #转灰度 gray = cv2.cvtColor(src_img,cv2.COLOR_BGR2GRAY) #图像二值化 ret,binary = cv2.threshold(gray,0,255,cv2.THRESH_BINARY) #轮廓检测 x,contours,hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE) #drawing = img #cv2.drawContours(drawing, contours, -1, (0, 0, 255), 3) # 填充轮廓颜色 #cv2.imshow('drawing', drawing) #cv2.waitKey(0) #print(contours) temp_contours = [] # 存储合理的轮廓 car_plates=[] if len(contours)>0: for contour in contours: if cv2.contourArea(contour) > Min_Area: temp_contours.append(contour) car_plates = [] for temp_contour in temp_contours: rect_tupple = cv2.minAreaRect(temp_contour) rect_width, rect_height = rect_tupple[1] if rect_width < rect_height: rect_width, rect_height = rect_height, rect_width aspect_ratio = rect_width / rect_height # 车牌正常情况下宽高比在2 - 5.5之间 if aspect_ratio > 2 and aspect_ratio < 5.5: car_plates.append(temp_contour) rect_vertices = cv2.boxPoints(rect_tupple) rect_vertices = np.int0(rect_vertices) if len(car_plates)==1: oldimg = cv2.drawContours(img, [rect_vertices], -1, (0, 0, 255), 2) #cv2.imshow("che pai ding wei", oldimg) # print(rect_tupple) break #把车牌号截取出来 if len(car_plates)==1: for car_plate in car_plates: row_min,col_min = np.min(car_plate[:,0,:],axis=0) row_max,col_max = np.max(car_plate[:,0,:],axis=0) cv2.rectangle(img,(row_min,col_min),(row_max,col_max),(0,255,0),2) card_img = img[col_min:col_max,row_min:row_max,:] cv2.imshow("img",img) cv2.imwrite(output_img + '/' + 'card_img' + '.jpg',card_img) cv2.imshow("card_img.",card_img) cv2.waitKey(0) cv2.destroyAllWindows() return 1 return 0
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
快活林资源网 Design By www.csstdc.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
快活林资源网 Design By www.csstdc.com
暂无评论...
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
2025年01月09日
2025年01月09日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]