快活林资源网 Design By www.csstdc.com
问题产生:今天在编写神经网络的Cluster作业时,需要根据根据数据标签用不同的颜色画出数据的分布情况,由此学习到了这种高效的方法。
传统思路:用for循环来挑选符合条件的元素,这样十分浪费时间。
代码示例:
from sklearn.datasets.samples_generator import make_blobs import numpy as np import matplotlib.pyplot as plt #product 20 samples and divide them in 4 different types X, label_true = make_blobs(n_samples=20,centers=4) print("Data:{:}".format(X)) print("label_true:{:}".format(label_true)) #eliminate the repeated elements labels=np.unique(label_true) print("labels:{:}".format(labels)) #plot fig = plt.figure() ax = fig.add_subplot(1, 1, 1) colors = 'rgbycm' for index,elem in enumerate(labels): position=label_true==elem print("position{:}:{:}".format(index,position)) plt.scatter(X[position,0],X[position,1],label="cluster %d"%elem,color=colors[index%len(colors)]) plt.show()
实验结果:
Data:[[ 6.28987299 1.19041843] [ 2.12673463 -1.90647309] [-8.56276424 1.8136798 ] [ 2.42611937 -3.81970786] [ 1.83488662 -3.10733306] [ 6.28320138 -0.24840258] [-6.74802304 1.13642657] [ 2.21681643 6.28894411] [-7.16100601 0.04482262] [ 1.66858847 3.42225284] [ 3.19972789 4.58804196] [-7.37006942 0.57068008] [ 0.52465584 -2.68794047] [ 2.71075921 3.57281778] [ 5.99343237 0.0120798 ] [ 4.28307033 4.28727222] [ 0.73714246 -2.38643522] [ 5.58384782 -0.62066592] [-8.44295576 -0.05933983] [ 5.33991984 1.24833992]] label_true:[0 2 1 2 2 0 1 3 1 3 3 1 2 3 0 3 2 0 1 0] labels:[0 1 2 3] position0:[ True False False False False True False False False False False False False False True False False True False True] position1:[False False True False False False True False True False False True False False False False False False True False] position2:[False True False True True False False False False False False False True False False False True False False False] position3:[False False False False False False False True False True True False False True False True False False False False]
结果分析:
我们可以看出黄色部分的作用,第一行 position=label_true==elem 的作用是让position在label_true==elem的位置置为True,反之为False,从而得到的position是一个True和False的集合,
而第三行 X[position,0],X[position,1] 就是选择为True的位置上的横坐标和纵坐标,打印出来。还有点懵"htmlcode">
import numpy as np a=np.empty(shape=[0,4], dtype=int) a=np.append(a,[[1,2,3,4],[2,3,4,5],[7,8,9,10]],axis=0) position=[True,False,True] print(a) print(a[position,3])
结果:
[[ 1 2 3 4] [ 2 3 4 5] [ 7 8 9 10]] [ 4 10]
结果分析:
显然这是一个3行4列的矩阵,我们用position得到的是[a[0],a[2]],然后取a[0]和a[2]的第4个元素,则为4和10.
是不是比用for快多了~~
以上这篇python实现在多维数组中挑选符合条件的全部元素就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
快活林资源网 Design By www.csstdc.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
快活林资源网 Design By www.csstdc.com
暂无评论...
更新日志
2025年01月08日
2025年01月08日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]