快活林资源网 Design By www.csstdc.com

基于pytorch来讲

MSELoss()多用于回归问题,也可以用于one_hotted编码形式,

CrossEntropyLoss()名字为交叉熵损失函数,不用于one_hotted编码形式

MSELoss()要求batch_x与batch_y的tensor都是FloatTensor类型

CrossEntropyLoss()要求batch_x为Float,batch_y为LongTensor类型

(1)CrossEntropyLoss() 举例说明:

比如二分类问题,最后一层输出的为2个值,比如下面的代码:

class CNN (nn.Module ) :
  def __init__ ( self , hidden_size1 , output_size , dropout_p) :
    super ( CNN , self ).__init__ ( )
    self.hidden_size1 = hidden_size1
    self.output_size = output_size
    self.dropout_p = dropout_p
    
    self.conv1 = nn.Conv1d ( 1,8,3,padding =1) 
    self.fc1 = nn.Linear (8*500, self.hidden_size1 )
    self.out = nn.Linear (self.hidden_size1,self.output_size ) 
 
  
  def forward ( self , encoder_outputs ) :
    cnn_out = F.max_pool1d ( F.relu (self.conv1(encoder_outputs)),2) 
    cnn_out = F.dropout ( cnn_out ,self.dropout_p) #加一个dropout
    cnn_out = cnn_out.view (-1,8*500) 
    output_1 = torch.tanh ( self.fc1 ( cnn_out ) )
    output = self.out ( ouput_1)
    return output

最后的输出结果为:

基于MSELoss()与CrossEntropyLoss()的区别详解

上面一个tensor为output结果,下面为target,没有使用one_hotted编码。

训练过程如下:

cnn_optimizer = torch.optim.SGD(cnn.parameters(),learning_rate,momentum=0.9,              weight_decay=1e-5)
criterion = nn.CrossEntropyLoss()
 
def train ( input_variable , target_variable , cnn , cnn_optimizer , criterion ) :
  cnn_output = cnn( input_variable )
  print(cnn_output)
  print(target_variable)
  loss = criterion ( cnn_output , target_variable)
  cnn_optimizer.zero_grad ()
  loss.backward( )
  cnn_optimizer.step( )
  #print('loss: ',loss.item())
  return loss.item() #返回损失

说明CrossEntropyLoss()是output两位为one_hotted编码形式,但target不是one_hotted编码形式。

(2)MSELoss() 举例说明:

网络结构不变,但是标签是one_hotted编码形式。下面的图仅做说明,网络结构不太对,出来的预测也不太对。

基于MSELoss()与CrossEntropyLoss()的区别详解

如果target不是one_hotted编码形式会报错,报的错误如下。

基于MSELoss()与CrossEntropyLoss()的区别详解

目前自己理解的两者的区别,就是这样的,至于多分类问题是不是也是样的有待考察。

以上这篇基于MSELoss()与CrossEntropyLoss()的区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

快活林资源网 Design By www.csstdc.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
快活林资源网 Design By www.csstdc.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。