函数原型
tf.nn.dynamic_rnn( cell, inputs, sequence_length=None, initial_state=None, dtype=None, parallel_iterations=None, swap_memory=False, time_major=False, scope=None )
实例讲解:
import tensorflow as tf import numpy as np n_steps = 2 n_inputs = 3 n_neurons = 5 X = tf.placeholder(tf.float32, [None, n_steps, n_inputs]) basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons) seq_length = tf.placeholder(tf.int32, [None]) outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32, sequence_length=seq_length) init = tf.global_variables_initializer() X_batch = np.array([ # step 0 step 1 [[0, 1, 2], [9, 8, 7]], # instance 1 [[3, 4, 5], [0, 0, 0]], # instance 2 (padded with zero vectors) [[6, 7, 8], [6, 5, 4]], # instance 3 [[9, 0, 1], [3, 2, 1]], # instance 4 ]) seq_length_batch = np.array([2, 1, 2, 2]) with tf.Session() as sess: init.run() outputs_val, states_val = sess.run( [outputs, states], feed_dict={X: X_batch, seq_length: seq_length_batch}) print("outputs_val.shape:", outputs_val.shape, "states_val.shape:", states_val.shape) print("outputs_val:", outputs_val, "states_val:", states_val)
log info:
outputs_val.shape: (4, 2, 5) states_val.shape: (4, 5) outputs_val: [[[ 0.53073734 -0.61281306 -0.5437517 0.7320347 -0.6109526 ] [ 0.99996936 0.99990636 -0.9867181 0.99726075 -0.99999976]] [[ 0.9931584 0.5877845 -0.9100412 0.988892 -0.9982337 ] [ 0. 0. 0. 0. 0. ]] [[ 0.99992317 0.96815354 -0.985101 0.9995968 -0.9999936 ] [ 0.99948144 0.9998127 -0.57493806 0.91015154 -0.99998355]] [[ 0.99999255 0.9998929 0.26732785 0.36024097 -0.99991137] [ 0.98875254 0.9922327 0.6505734 0.4732064 -0.9957567 ]]] states_val: [[ 0.99996936 0.99990636 -0.9867181 0.99726075 -0.99999976] [ 0.9931584 0.5877845 -0.9100412 0.988892 -0.9982337 ] [ 0.99948144 0.9998127 -0.57493806 0.91015154 -0.99998355] [ 0.98875254 0.9922327 0.6505734 0.4732064 -0.9957567 ]]
首先输入X是一个 [batch_size,step,input_size] = [4,2,3] 的tensor,注意我们这里调用的是BasicRNNCell,只有一层循环网络,outputs是最后一层每个step的输出,它的结构是[batch_size,step,n_neurons] = [4,2,5],states是每一层的最后那个step的输出,由于本例中,我们的循环网络只有一个隐藏层,所以它就代表这一层的最后那个step的输出,因此它和step的大小是没有关系的,我们的X有4个样本组成,输出神经元大小n_neurons是5,因此states的结构就是[batch_size,n_neurons] = [4,5],最后我们观察数据,states的每条数据正好就是outputs的最后一个step的输出。
下面我们继续讲解多个隐藏层的情况,这里是三个隐藏层,注意我们这里仍然是调用BasicRNNCell
import tensorflow as tf import numpy as np n_steps = 2 n_inputs = 3 n_neurons = 5 n_layers = 3 X = tf.placeholder(tf.float32, [None, n_steps, n_inputs]) seq_length = tf.placeholder(tf.int32, [None]) layers = [tf.contrib.rnn.BasicRNNCell(num_units=n_neurons, activation=tf.nn.relu) for layer in range(n_layers)] multi_layer_cell = tf.contrib.rnn.MultiRNNCell(layers) outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, dtype=tf.float32, sequence_length=seq_length) init = tf.global_variables_initializer() X_batch = np.array([ # step 0 step 1 [[0, 1, 2], [9, 8, 7]], # instance 1 [[3, 4, 5], [0, 0, 0]], # instance 2 (padded with zero vectors) [[6, 7, 8], [6, 5, 4]], # instance 3 [[9, 0, 1], [3, 2, 1]], # instance 4 ]) seq_length_batch = np.array([2, 1, 2, 2]) with tf.Session() as sess: init.run() outputs_val, states_val = sess.run( [outputs, states], feed_dict={X: X_batch, seq_length: seq_length_batch}) print("outputs_val.shape:", outputs, "states_val.shape:", states) print("outputs_val:", outputs_val, "states_val:", states_val)
log info:
outputs_val.shape: Tensor("rnn/transpose_1:0", shape=("htmlcode">outputs_val.shape: Tensor("rnn/transpose_1:0", shape=("" src="/UploadFiles/2021-04-08/20200120172149.jpg">如果您不查看框内的内容,LSTM单元看起来与常规单元格完全相同,除了它的状态分为两个向量:h(t)和c(t)。你可以将h(t)视为短期状态,将c(t)视为长期状态。
因此我们的states包含三个LSTMStateTuple,每一个表示每一层的最后一个step的输出,这个输出有两个信息,一个是h表示短期记忆信息,一个是c表示长期记忆信息。维度都是[batch_size,n_neurons] = [4,5],states的最后一个LSTMStateTuple中的h就是outputs的最后一个step的输出
以上这篇关于tf.nn.dynamic_rnn返回值详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]