快活林资源网 Design By www.csstdc.com
一:需重定义神经网络继续训练的方法
1.训练代码
import numpy as np import tensorflow as tf x_data=np.random.rand(100).astype(np.float32) y_data=x_data*0.1+0.3 weight=tf.Variable(tf.random_uniform([1],-1.0,1.0),name="w") biases=tf.Variable(tf.zeros([1]),name="b") y=weight*x_data+biases loss=tf.reduce_mean(tf.square(y-y_data)) #loss optimizer=tf.train.GradientDescentOptimizer(0.5) train=optimizer.minimize(loss) init=tf.global_variables_initializer() sess=tf.Session() sess.run(init) saver=tf.train.Saver(max_to_keep=0) for step in range(10): sess.run(train) saver.save(sess,"./save_mode",global_step=step) #保存 print("当前进行:",step)
第一次训练截图:
2.恢复上一次的训练
import numpy as np import tensorflow as tf sess=tf.Session() saver=tf.train.import_meta_graph(r'save_mode-9.meta') saver.restore(sess,tf.train.latest_checkpoint(r'./')) print(sess.run("w:0"),sess.run("b:0")) graph=tf.get_default_graph() weight=graph.get_tensor_by_name("w:0") biases=graph.get_tensor_by_name("b:0") x_data=np.random.rand(100).astype(np.float32) y_data=x_data*0.1+0.3 y=weight*x_data+biases loss=tf.reduce_mean(tf.square(y-y_data)) optimizer=tf.train.GradientDescentOptimizer(0.5) train=optimizer.minimize(loss) saver=tf.train.Saver(max_to_keep=0) for step in range(10): sess.run(train) saver.save(sess,r"./save_new_mode",global_step=step) print("当前进行:",step," ",sess.run(weight),sess.run(biases))
使用上次保存下的数据进行继续训练和保存:
#最后要提一下的是:
checkpoint文件
meta保存了TensorFlow计算图的结构信息
datat保存每个变量的取值
index保存了 表
加载restore时的文件路径名是以checkpoint文件中的“model_checkpoint_path”值决定的
这个方法需要重新定义神经网络
二:不需要重新定义神经网络的方法:
在上面训练的代码中加入:tf.add_to_collection("name",参数)
import numpy as np import tensorflow as tf x_data=np.random.rand(100).astype(np.float32) y_data=x_data*0.1+0.3 weight=tf.Variable(tf.random_uniform([1],-1.0,1.0),name="w") biases=tf.Variable(tf.zeros([1]),name="b") y=weight*x_data+biases loss=tf.reduce_mean(tf.square(y-y_data)) optimizer=tf.train.GradientDescentOptimizer(0.5) train=optimizer.minimize(loss) tf.add_to_collection("new_way",train) init=tf.global_variables_initializer() sess=tf.Session() sess.run(init) saver=tf.train.Saver(max_to_keep=0) for step in range(10): sess.run(train) saver.save(sess,"./save_mode",global_step=step) print("当前进行:",step)
在下面的载入代码中加入:tf.get_collection("name"),就可以直接使用了
import numpy as np import tensorflow as tf sess=tf.Session() saver=tf.train.import_meta_graph(r'save_mode-9.meta') saver.restore(sess,tf.train.latest_checkpoint(r'./')) print(sess.run("w:0"),sess.run("b:0")) graph=tf.get_default_graph() weight=graph.get_tensor_by_name("w:0") biases=graph.get_tensor_by_name("b:0") y=tf.get_collection("new_way")[0] saver=tf.train.Saver(max_to_keep=0) for step in range(10): sess.run(y) saver.save(sess,r"./save_new_mode",global_step=step) print("当前进行:",step," ",sess.run(weight),sess.run(biases))
总的来说,下面这种方法好像是要便利一些
以上这篇tensorflow如何继续训练之前保存的模型实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
快活林资源网 Design By www.csstdc.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
快活林资源网 Design By www.csstdc.com
暂无评论...
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
2025年01月02日
2025年01月02日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]