快活林资源网 Design By www.csstdc.com

1.tf.train.exponential_decay() 指数衰减学习率:

#tf.train.exponential_decay(learning_rate, global_steps, decay_steps, decay_rate, staircase=True/False):
#指数衰减学习率
#learning_rate-学习率
#global_steps-训练轮数
#decay_steps-完整的使用一遍训练数据所需的迭代轮数;=总训练样本数/batch
#decay_rate-衰减速度
#staircase-衰减方式;=True,那就表明每decay_steps次计算学习速率变化,更新原始学习速率;=alse,那就是每一步都更新学习速率。learning_rate = tf.train.exponential_decay(
initial_learning_rate = 0.001
global_step = tf.Variable(0, trainable=False)
decay_steps = 100
decay_rate = 0.95
total_loss = slim.losses.get_total_loss()
learning_rate = tf.train.exponential_decay(initial_learning_rate, global_step, decay_steps, decay_rate, True, name='learning_rate')
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(total_loss, global_step)

2.tf.train.ExponentialMovingAverage(decay, steps) 滑动平均更新参数:

initial_learning_rate = 0.001
global_step = tf.Variable(0, trainable=False)
decay_steps = 100
decay_rate = 0.95
total_loss = slim.losses.get_total_loss()
learning_rate = tf.train.exponential_decay(initial_learning_rate, global_step, decay_steps, decay_rate, True, name='learning_rate')
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(total_loss, global_step)
ema = tf.train.ExponentialMovingAverage(decay=0.9999)
#tf.trainable_variables--返回的是需要训练的变量列表
averages_op = ema.apply(tf.trainable_variables())
with tf.control_dependencies([optimizer]):
   train_op = tf.group(averages_op)

以上这篇有关Tensorflow梯度下降常用的优化方法分享就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

快活林资源网 Design By www.csstdc.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
快活林资源网 Design By www.csstdc.com

P70系列延期,华为新旗舰将在下月发布

3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。

而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?

根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。