tensorflow中tf.concat的axis的使用我一直理解的比较模糊,这次做个笔记理下自己的思路。
import tensorflow as tf tf.enable_eager_execution() import numpy as np
先生成两个矩阵m1, 和m2, 大小为两行三列
m1 = np.random.rand(2,3) # m1.shape (2,3) m1 array([[0.44529968, 0.42451167, 0.07463199], [0.35787143, 0.22926186, 0.34583839]]) m2 = np.random.rand(2,3) # m2.shape (2,3) m2 array([[0.92811531, 0.6180391 , 0.71969461], [0.00564108, 0.55381637, 0.17155987]])
接下来采用tf.concat进行连接,简单来说,axis=0实际就是按行拼接,axis=1就是按列拼接
# axis = 0 m3 = tf.concat([m1,m2],axis=0) m3 array([[0.44529968, 0.42451167, 0.07463199], [0.35787143, 0.22926186, 0.34583839], [0.92811531, 0.6180391 , 0.71969461], [0.00564108, 0.55381637, 0.17155987]]) m3.shape (4,3) # axis = 1 m4 = tf.concat([m1,m2],axis=1) m4 array([[0.44529968, 0.42451167, 0.07463199, 0.92811531, 0.6180391 , 0.71969461], [0.35787143, 0.22926186, 0.34583839, 0.00564108, 0.55381637, 0.17155987]]) m4.shape (2,6)
但这实际上这只有在我们的输入是二维矩阵时才可以这样理解。axis的实际含义是根据axis指定的维度进行连接,如矩阵m1的维度为(2,3), 那么axis=0就代表了第一个维度‘2',因此,将m1和m2按照第一个维度进行连接,得到的新的矩阵就是将第一维度进行相加,其余维度不变,即维度变成了(4,3).
同理,axis=1时就是将矩阵的第二维度进行合并,其余维度不变,即维度变成了(2,6)。
接下来处理三个维度的数据,这也是我们在神经网络数据中经常要用到的,增加的一个维度通常代表了batch_size. 如下面的m5, batch_size=5, 可以理解为每个样本是个2*3的矩阵,一次将5个样本放在一起。
m5 = np.random.rand(5,2,3) m6 = np.random.rand(5,2,3) m5 array([[[0.04347217, 0.03368232, 0.36017024], [0.74223151, 0.06609717, 0.38155531]], [[0.50602728, 0.355745 , 0.93379797], [0.97572621, 0.53745311, 0.66461841]], [[0.92832972, 0.02441683, 0.48436203], [0.69651043, 0.24194495, 0.64623769]], [[0.66667596, 0.60053027, 0.2970753 ], [0.13281764, 0.29326326, 0.32393028]], [[0.40892782, 0.48516547, 0.02298178], [0.51239083, 0.40151008, 0.29913204]]]) m6 array([[[0.58001909, 0.56925704, 0.09798246], [0.20841893, 0.62683633, 0.17923217]], [[0.91216164, 0.0200782 , 0.3986682 ], [0.86687006, 0.83730576, 0.48443545]], [[0.65641654, 0.59786311, 0.2055584 ], [0.65391822, 0.74093133, 0.02416627]], [[0.80778861, 0.22644312, 0.91610686], [0.0789411 , 0.86955002, 0.41437046]], [[0.97821668, 0.97118328, 0.97714882], [0.21543173, 0.06964724, 0.35360077]]])
在这种情况下,axis=0代表的第一个维度的含义就不再是之前认为的行的概念了,现在m5的第一维度的值是5,代表的是batch_size。仍然按照之前的理解,如果设置axis=0, axis=0就是将第一维度进行相加,其余维度不变,因此我们可以得到新的维度为(10,2,3)。
m7 = tf.concat([m5, m6],axis=0) m7 array([[[0.04347217, 0.03368232, 0.36017024], [0.74223151, 0.06609717, 0.38155531]], [[0.50602728, 0.355745 , 0.93379797], [0.97572621, 0.53745311, 0.66461841]], [[0.92832972, 0.02441683, 0.48436203], [0.69651043, 0.24194495, 0.64623769]], [[0.66667596, 0.60053027, 0.2970753 ], [0.13281764, 0.29326326, 0.32393028]], [[0.40892782, 0.48516547, 0.02298178], [0.51239083, 0.40151008, 0.29913204]], [[0.58001909, 0.56925704, 0.09798246], [0.20841893, 0.62683633, 0.17923217]], [[0.91216164, 0.0200782 , 0.3986682 ], [0.86687006, 0.83730576, 0.48443545]], [[0.65641654, 0.59786311, 0.2055584 ], [0.65391822, 0.74093133, 0.02416627]], [[0.80778861, 0.22644312, 0.91610686], [0.0789411 , 0.86955002, 0.41437046]], [[0.97821668, 0.97118328, 0.97714882], [0.21543173, 0.06964724, 0.35360077]]]) m7.shape (10,2,3)
同理,也可以进行axis=1, axis=2的concat操作。
此外,axis的值也可以设置为负数,如axis=-1实际上就是指倒数第一个维度,如m5的倒数第一个维度的值就是‘3'。因此,axis=2的操作和axis=-1的操作是等价的。
以上这篇tf.concat中axis的含义与使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]