在做目标检测任务时,若使用Github已复现的论文时,需首先将自己的数据集转化为VOC数据集的格式,因为论文作者使用的是公开数据集VOC 2007、VOC2012、COCO等类型数据集做方法验证与比对。
一、VOC数据集格式
--VOCdevkit2007
--VOC2007
--Annotations (xml格式的文件)
--000001.xml
--ImageSets
--Layout
--Main
--train.txt
--test.txt
--val.txt
--trainval.txt
--Segmentation
--JPEGImages (训练集和测试集图片)
--000001.jpg
--results
二、转换过程步骤
1. 使用标注工具标注图片目标检测框,生成JSON格式的标注文件(本人使用此生成类型的标注工具,也可使用(LabelImg等标注工具);
2. 批量修改图片和标注文件名称,从000001.jpg、000001.json标号开始;
#coding='utf-8' import os import numpy as np def imgs_rename(imgs_path): imgs_labels_name = np.array(os.listdir(imgs_path)).reshape(-1,2) # 从 000001开始 i = 1 for img_label_name in imgs_labels_name: if img_label_name[0].endswith('.jpg'): # 修改图片名称 img_old_name = os.path.join(os.path.abspath(imgs_path), img_label_name[0]) # 类别+图片编号 format(str(i),'0>3s') 填充对齐 img_new_name = os.path.join(os.path.abspath(imgs_path), '00' + format(str(i),'0>4s') + '.jpg') os.rename(img_old_name, img_new_name) # 修改json文件名称 label_old_name = os.path.join(os.path.abspath(imgs_path), img_label_name[1]) label_new_name = os.path.join(os.path.abspath(imgs_path), '00' + format(str(i), '0>4s') + '.json') os.rename(label_old_name, label_new_name) i = i + 1 if __name__=='__main__': # 读取json文件的路径 root = "read_file_path" imgs_rename(root)
3. 提取图片和标注文件到不同文件夹下,并将读取的标注框转化为txt文件格式(本人的图片和JSON文件在同一目录下生成);
import json import os import numpy as np import cv2 #读取json格式文件,返回坐标 def read_json(file_name): file = open(file_name,'r',encoding='utf-8') set = json.load(file) # print("读取完整信息:",set) coord = set['objects'][0]['seg'] # 只读取第一个标注的车牌 return coord def save_imgs(imgs_jsons_files, imgs_path): # 提取图片文件夹中的jpg文件名称 for idx in range(len(imgs_jsons_list)): if imgs_jsons_list[idx][-3:]=='jpg': img_name = imgs_jsons_list[idx] read_img_path = os.path.join(imgs_jsons_files, img_name) img = cv2.imread(read_img_path) save_img_path = os.path.join(imgs_path, img_name) cv2.imwrite(save_img_path, img) def save_labels(imgs_jsons_files, labels_path): # 提取图片文件夹中的json文件名称 for idx in range(len(imgs_jsons_list)): if imgs_jsons_list[idx][-4:] == 'json': json_name = imgs_jsons_list[idx] # 操作每一个json文件,读取并保存坐标 json_path = os.path.join(imgs_jsons_files, json_name) json_coord = read_json(json_path) if len(json_coord) > 8: print("标注坐标多于四个点的文件名称:", json_name) # 提取左上和右下坐标 roi_coord = [] for idx in range(len(json_coord)): if idx == 0 or idx == 1 or idx == 4 or idx == 5: roi_coord.extend([json_coord[idx]]) # 保存roi坐标到txt文件中 label_path = labels_path + json_name[:6] + '.txt' np.savetxt(label_path, roi_coord) if __name__=='__main__': print("loading......") # 读取jpg json文件的路径 imgs_jsons_files = "Jpg_json_file_path" # 保存读取的真实标签路径 labels_path = "save_labels_path" if not os.path.exists(labels_path): os.mkdir(labels_path) # 保存读取的图片 imgs_path = "sabe_imgs_path" if not os.path.exists(imgs_path): os.mkdir(imgs_path) imgs_jsons_list = os.listdir(imgs_jsons_files) save_imgs(imgs_jsons_files, imgs_path) save_labels(imgs_jsons_files, labels_path) print("done!!!")
4. 转化标注框txt格式为xml格式;
# encoding = utf-8 import os import numpy as np import codecs import cv2 def read_txt(label_path): file = open(label_path,'r',encoding='utf-8') label_lines = file.readlines() label = [] for line in label_lines: one_line = float(line.strip().split('\n')[0]) label.extend([one_line]) return np.array(label,dtype=np.float64) def covert_xml(label,xml_path, img_name, img_path): # 获得图片信息 img = cv2.imread(img_path) height, width, depth = img.shape x_min,y_min,x_max,y_max = label xml = codecs.open(xml_path, 'w', encoding='utf-8') xml.write('<annotation>\n') xml.write('\t<folder>' + 'VOC2007' + '</folder>\n') xml.write('\t<filename>' + img_name + '</filename>\n') xml.write('\t<source>\n') xml.write('\t\t<database>The VOC 2007 Database</database>\n') xml.write('\t\t<annotation>Pascal VOC2007</annotation>\n') xml.write('\t\t<image>flickr</image>\n') xml.write('\t\t<flickrid>NULL</flickrid>\n') xml.write('\t</source>\n') xml.write('\t<owner>\n') xml.write('\t\t<flickrid>NULL</flickrid>\n') xml.write('\t\t<name>faster</name>\n') xml.write('\t</owner>\n') xml.write('\t<size>\n') xml.write('\t\t<width>' + str(width) + '</width>\n') xml.write('\t\t<height>' + str(height) + '</height>\n') xml.write('\t\t<depth>' + str(depth) + '</depth>\n') xml.write('\t</size>\n') xml.write('\t\t<segmented>0</segmented>\n') xml.write('\t<object>\n') xml.write('\t\t<name>plate</name>\n') xml.write('\t\t<pose>Unspecified</pose>\n') xml.write('\t\t<truncated>0</truncated>\n') xml.write('\t\t<difficult>0</difficult>\n') xml.write('\t\t<bndbox>\n') xml.write('\t\t\t<xmin>' + str(x_min) + '</xmin>\n') xml.write('\t\t\t<ymin>' + str(y_min) + '</ymin>\n') xml.write('\t\t\t<xmax>' + str(x_max) + '</xmax>\n') xml.write('\t\t\t<ymax>' + str(y_max) + '</ymax>\n') xml.write('\t\t</bndbox>\n') xml.write('\t</object>\n') xml.write('</annotation>') if __name__=='__main__': labels_file_path = "D:/Code_py/VOC2007/labels/" imgs_file_path = "D:/Code_Py/VOC2007/imgs/" xmls_file_path = "D:/Code_py/VOC2007/xmls/" if not os.path.exists(xmls_file_path): os.mkdir(xmls_file_path) labels_name = os.listdir(labels_file_path) for label_name in labels_name: label_path = os.path.join(labels_file_path, label_name) label = read_txt(label_path) xml_name = label_name[:6]+'.xml' xml_path = os.path.join(xmls_file_path, xml_name) img_name = label_name[:6]+'.jpg' img_path = os.path.join(imgs_file_path, img_name) covert_xml(label, xml_path, img_name, img_path)
5. 切分数据集为训练集、验证集和测试集,仅保存图片的名称到txt问价下即可;
import os import numpy as np if __name__=='__main__': root = "save_path" train = open(root+"train.txt", 'w', encoding='utf-8') train_val = open(root+"trainval.txt", 'w', encoding='utf-8') test = open(root+"test.txt", 'w', encoding='utf-8') val = open(root+"val.txt", 'w', encoding='utf-8') imgs_path = os.path.join(root, "imgs") imgs_name = os.listdir(imgs_path) # 首先切分训练验证集和测试集 train_val_img_info = [] for img_name in imgs_name: x = np.random.uniform(0,1) img_info = str(img_name).strip().split('.')[0] # 随机选取1/2比例的数据为测试集 if x>0.5: train_val_img_info.append(img_info) train_val.writelines(img_info) else: test.writelines(img_info+'\n') # 然后切分训练验证集为训练集和验证集 for img_name in train_val_img_info: x = np.random.uniform(0,1) if x>0.5: train.writelines(img_name+'\n') else: val.writelines(img_name+'\n')
以上这篇将数据集制作成VOC数据集格式的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]