快活林资源网 Design By www.csstdc.com
Himmelblau函数如下:
有四个全局最小解,且值都为0,这个函数常用来检验优化算法的表现如何:
可视化函数图像:
import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D def himmelblau(x): return (x[0] ** 2 + x[1] - 11) ** 2 + (x[0] + x[1] ** 2 - 7) ** 2 x = np.arange(-6, 6, 0.1) y = np.arange(-6, 6, 0.1) X, Y = np.meshgrid(x, y) Z = himmelblau([X, Y]) fig = plt.figure("himmeblau") ax = fig.gca(projection='3d') ax.plot_surface(X, Y, Z) ax.view_init(60, -30) ax.set_xlabel('x') ax.set_ylabel('y') plt.show()
结果:
使用随机梯度下降优化:
import torch def himmelblau(x): return (x[0] ** 2 + x[1] - 11) ** 2 + (x[0] + x[1] ** 2 - 7) ** 2 # 初始设置为0,0. x = torch.tensor([0., 0.], requires_grad=True) # 优化目标是找到使himmelblau函数值最小的坐标x[0],x[1], # 也就是x, y # 这里是定义Adam优化器,指明优化目标是x,学习率是1e-3 optimizer = torch.optim.Adam([x], lr=1e-3) for step in range(20000): # 每次计算出当前的函数值 pred = himmelblau(x) # 当网络参量进行反馈时,梯度是被积累的而不是被替换掉,这里即每次将梯度设置为0 optimizer.zero_grad() # 生成当前所在点函数值相关的梯度信息,这里即优化目标的梯度信息 pred.backward() # 使用梯度信息更新优化目标的值,即更新x[0]和x[1] optimizer.step() # 每2000次输出一下当前情况 if step % 2000 == 0: print("step={},x={},f(x)={}".format(step, x.tolist(), pred.item()))
输出结果:
step=0,x=[0.0009999999310821295, 0.0009999999310821295],f(x)=170.0 step=2000,x=[2.3331806659698486, 1.9540692567825317],f(x)=13.730920791625977 step=4000,x=[2.9820079803466797, 2.0270984172821045],f(x)=0.014858869835734367 step=6000,x=[2.999983549118042, 2.0000221729278564],f(x)=1.1074007488787174e-08 step=8000,x=[2.9999938011169434, 2.0000083446502686],f(x)=1.5572823031106964e-09 step=10000,x=[2.999997854232788, 2.000002861022949],f(x)=1.8189894035458565e-10 step=12000,x=[2.9999992847442627, 2.0000009536743164],f(x)=1.6370904631912708e-11 step=14000,x=[2.999999761581421, 2.000000238418579],f(x)=1.8189894035458565e-12 step=16000,x=[3.0, 2.0],f(x)=0.0 step=18000,x=[3.0, 2.0],f(x)=0.0
从上面结果看,找到了一组最优解[3.0, 2.0],此时极小值为0.0。如果修改Tensor变量x的初始化值,可能会找到其它的极小值,也就是说初始化值对于找到最优解很关键。
补充拓展:pytorch 搭建自己的神经网络和各种优化器
还是直接看代码吧!
import torch import torchvision import torchvision.transforms as transform import torch.utils.data as Data import matplotlib.pyplot as plt from torch.utils.data import Dataset,DataLoader import pandas as pd import numpy as np from torch.autograd import Variable # data set train=pd.read_csv('Thirdtest.csv') #cut 0 col as label train_label=train.iloc[:,[0]] #只读取一列 #train_label=train.iloc[:,0:3] #cut 1~16 col as data train_data=train.iloc[:,1:] #change to np train_label_np=train_label.values train_data_np=train_data.values #change to tensor train_label_ts=torch.from_numpy(train_label_np) train_data_ts=torch.from_numpy(train_data_np) train_label_ts=train_label_ts.type(torch.LongTensor) train_data_ts=train_data_ts.type(torch.FloatTensor) print(train_label_ts.shape) print(type(train_label_ts)) train_dataset=Data.TensorDataset(train_data_ts,train_label_ts) train_loader=DataLoader(dataset=train_dataset,batch_size=64,shuffle=True) #make a network import torch.nn.functional as F # 激励函数都在这 class Net(torch.nn.Module): # 继承 torch 的 Module def __init__(self ): super(Net, self).__init__() # 继承 __init__ 功能 self.hidden1 = torch.nn.Linear(16, 30)# 隐藏层线性输出 self.out = torch.nn.Linear(30, 3) # 输出层线性输出 def forward(self, x): # 正向传播输入值, 神经网络分析出输出值 x = F.relu(self.hidden1(x)) # 激励函数(隐藏层的线性值) x = self.out(x) # 输出值, 但是这个不是预测值, 预测值还需要再另外计算 return x # net=Net() # optimizer = torch.optim.SGD(net.parameters(), lr=0.0001,momentum=0.001) # loss_func = torch.nn.CrossEntropyLoss() # the target label is NOT an one-hotted # loss_list=[] # for epoch in range(500): # for step ,(b_x,b_y) in enumerate (train_loader): # b_x,b_y=Variable(b_x),Variable(b_y) # b_y=b_y.squeeze(1) # output=net(b_x) # loss=loss_func(output,b_y) # optimizer.zero_grad() # loss.backward() # optimizer.step() # if epoch%1==0: # loss_list.append(float(loss)) # print( "Epoch: ", epoch, "Step ", step, "loss: ", float(loss)) # 为每个优化器创建一个 net net_SGD = Net() net_Momentum = Net() net_RMSprop = Net() net_Adam = Net() nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam] #定义优化器 LR=0.0001 opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR,momentum=0.001) opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8) opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9) opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99)) optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam] loss_func = torch.nn.CrossEntropyLoss() losses_his = [[], [], [], []] for net, opt, l_his in zip(nets, optimizers, losses_his): for epoch in range(500): for step, (b_x, b_y) in enumerate(train_loader): b_x, b_y = Variable(b_x), Variable(b_y) b_y = b_y.squeeze(1)# 数据必须得是一维非one-hot向量 # 对每个优化器, 优化属于他的神经网络 output = net(b_x) # get output for every net loss = loss_func(output, b_y) # compute loss for every net opt.zero_grad() # clear gradients for next train loss.backward() # backpropagation, compute gradients opt.step() # apply gradients if epoch%1==0: l_his.append(loss.data.numpy()) # loss recoder print("optimizers: ",opt,"Epoch: ",epoch,"Step ",step,"loss: ",float(loss)) labels = ['SGD', 'Momentum', 'RMSprop', 'Adam'] for i, l_his in enumerate(losses_his): plt.plot(l_his, label=labels[i]) plt.legend(loc='best') plt.xlabel('Steps') plt.ylabel('Loss') plt.xlim((0,1000)) plt.ylim((0,4)) plt.show() # # for epoch in range(5): # for step ,(b_x,b_y) in enumerate (train_loader): # b_x,b_y=Variable(b_x),Variable(b_y) # b_y=b_y.squeeze(1) # output=net(b_x) # loss=loss_func(output,b_y) # loss.backward() # optimizer.zero_grad() # optimizer.step() # print(loss)
以上这篇Pytorch对Himmelblau函数的优化详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
快活林资源网 Design By www.csstdc.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
快活林资源网 Design By www.csstdc.com
暂无评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
2024年12月29日
2024年12月29日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]