最近在老家找工作,无奈老家工作真心太少,也没什么面试机会,不过之前面试一家公司,提了一个有意思的需求,检测河面没有有什么船只之类的物体,我当时第一反应是用opencv做识别,不过回家想想,河面相对的东西比较少,画面比较单一,只需要检测有没有移动的物体不就简单很多嘛,如果做街道垃圾检测的话可能就很复杂了,毕竟街道上行人,车辆,动物,很多干扰物,于是就花了一个小时写了一个小的demo,只需在程序同级目录创建一个img目录就可以了
# -*-coding:utf-8 -*- __author__ = "ZJL" import cv2 import time # 保存截图 save_path = './img/' # 定义摄像头对象,其参数0表示第一个摄像头 camera = cv2.VideoCapture(0) # 判断视频是否打开 if (camera.isOpened()): print('Open') else: print('摄像头未打开') # 测试用,查看视频size size = (int(camera.get(cv2.CAP_PROP_FRAME_WIDTH)), int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT))) print('size:'+repr(size)) # 帧率 fps = 5 # 总是取前一帧做为背景(不用考虑环境影响) pre_frame = None while(1): start = time.time() # 读取视频流 ret, frame = camera.read() # 转灰度图 gray_lwpCV = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) if not ret: break end = time.time() cv2.imshow("capture", frame) # 运动检测部分 seconds = end - start if seconds < 1.0 / fps: time.sleep(1.0 / fps - seconds) gray_lwpCV = cv2.resize(gray_lwpCV, (500, 500)) # 用高斯滤波进行模糊处理 gray_lwpCV = cv2.GaussianBlur(gray_lwpCV, (21, 21), 0) # 如果没有背景图像就将当前帧当作背景图片 if pre_frame is None: pre_frame = gray_lwpCV else: # absdiff把两幅图的差的绝对值输出到另一幅图上面来 img_delta = cv2.absdiff(pre_frame, gray_lwpCV) #threshold阈值函数(原图像应该是灰度图,对像素值进行分类的阈值,当像素值高于(有时是小于)阈值时应该被赋予的新的像素值,阈值方法) thresh = cv2.threshold(img_delta, 25, 255, cv2.THRESH_BINARY)[1] # 膨胀图像 thresh = cv2.dilate(thresh, None, iterations=2) # findContours检测物体轮廓(寻找轮廓的图像,轮廓的检索模式,轮廓的近似办法) image, contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for c in contours: # 设置敏感度 # contourArea计算轮廓面积 if cv2.contourArea(c) < 1000: continue else: print("出现目标物,请求核实") # 保存图像 cv2.imwrite(save_path + str(time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))) + '.jpg', frame) break pre_frame = gray_lwpCV if cv2.waitKey(1) & 0xFF == ord('q'): break # release()释放摄像头 camera.release() #destroyAllWindows()关闭所有图像窗口 cv2.destroyAllWindows()
想出现一个矩形框跟随移动物于是进行了改造,结果发现效果不是很理想,不能很好的框住移动目标,要么只框一部分,要么出现在移动目标附近,尴尬
# -*-coding:utf-8 -*- __author__ = "ZJL" import cv2 import time # 保存截图 save_path = './img/' # 定义摄像头对象,其参数0表示第一个摄像头 camera = cv2.VideoCapture(0) # 判断视频是否打开 if (camera.isOpened()): print('Open') else: print('摄像头未打开') # 测试用,查看视频size size = (int(camera.get(cv2.CAP_PROP_FRAME_WIDTH)), int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT))) print('size:'+repr(size)) # 帧率 fps = 5 # 总是取前一帧做为背景(不用考虑环境影响) pre_frame = None while(1): start = time.time() # 读取视频流 ret, frame = camera.read() # 转灰度图 gray_lwpCV = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) if not ret: break end = time.time() # 显示图像 # cv2.imshow("capture", frame) # 运动检测部分 seconds = end - start if seconds < 1.0 / fps: time.sleep(1.0 / fps - seconds) gray_lwpCV = cv2.resize(gray_lwpCV, (500, 500)) # 用高斯滤波进行模糊处理 gray_lwpCV = cv2.GaussianBlur(gray_lwpCV, (21, 21), 0) # 如果没有背景图像就将当前帧当作背景图片 if pre_frame is None: pre_frame = gray_lwpCV else: # absdiff把两幅图的差的绝对值输出到另一幅图上面来 img_delta = cv2.absdiff(pre_frame, gray_lwpCV) #threshold阈值函数(原图像应该是灰度图,对像素值进行分类的阈值,当像素值高于(有时是小于)阈值时应该被赋予的新的像素值,阈值方法) thresh = cv2.threshold(img_delta, 25, 255, cv2.THRESH_BINARY)[1] # 膨胀图像 thresh = cv2.dilate(thresh, None, iterations=2) # findContours检测物体轮廓(寻找轮廓的图像,轮廓的检索模式,轮廓的近似办法) image, contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for c in contours: # 设置敏感度 # contourArea计算轮廓面积 if cv2.contourArea(c) < 1000: continue else: # 画出矩形框架,返回值x,y是矩阵左上点的坐标,w,h是矩阵的宽和高 (x, y, w, h) = cv2.boundingRect(c) # rectangle(原图,(x,y)是矩阵的左上点坐标,(x+w,y+h)是矩阵的右下点坐标,(0,255,0)是画线对应的rgb颜色,2是所画的线的宽度) cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) # putText 图片中加入文字 cv2.putText(frame, "now time: {}".format(str(time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))) ), (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) print("出现目标物,请求核实") # 保存图像 cv2.imwrite(save_path + str(time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))) + '.jpg', frame) break pre_frame = gray_lwpCV # 显示图像 cv2.imshow("capture", frame) # cv2.imshow("Thresh", thresh) # 进行阀值化来显示图片中像素强度值有显著变化的区域的画面 cv2.imshow("Frame Delta", img_delta) if cv2.waitKey(1) & 0xFF == ord('q'): break # release()释放摄像头 camera.release() #destroyAllWindows()关闭所有图像窗口 cv2.destroyAllWindows()
补充知识:基于python使用opencv监测视频指定区域是否有物体移动
缘由:车停车位,早上看到右后轮有很明显的干了的水渍,前一天下雨,车身其他位置没有如此显眼的水渍,不可能是前天雨水的水渍,仔细一看,从油箱盖一直往下,很明显,有某个X德的人故意尿在车上的,找物业拿到视频监控文件,自己看太费时间,于是。。。
思路:读取视频的关键帧,对比指定区域的数据,如果变化较大(排除环境光线变化),则有物体移动,截取当前帧保存备用。
行动:对于python处理视频不了解,找来找去,找到opencv,符合需求。
原来是个熊孩子小学生,上楼就到家了,这爹妈教也没管教说不能随地大小便么。
代码如下:
#!/usr/bin/env python # coding: utf-8 # @author: sSWans # @file: main.py # @time: 2018/1/11 15:54 import os import random from _datetime import datetime import cv2 path = 'F:\\111' # 遍历目录下的视频文件 def get_files(fpath): files_list = [] for i in os.listdir(fpath): files_list.append(os.path.join(fpath, i)) return files_list # 视频处理 def process(file, fname): # camera = cv2.VideoCapture(0) # 参数0表示第一个摄像头 camera = cv2.VideoCapture(file) # 参数设置,监测矩形区域 rectangleX = 880 # 矩形最左点x坐标 rectangleXCols = 0 # 矩形x轴上的长度 rectangleY = 650 # 矩形最上点y坐标 rectangleYCols = 100 # 矩形y轴上的长度 KeyFrame = 17 # 取关键帧的间隔数,根据视频的帧率设置,我的视频是16FPS counter = 1 # 取帧计数器 pre_frame = None # 总是取视频流前一帧做为背景相对下一帧进行比较 # 判断视频是否打开 if not camera.isOpened(): print('视频文件打开失败!') width = int(camera.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT)) print('视频尺寸(高,宽):', height, width) if rectangleXCols == 0: rectangleXCols = width - rectangleX if rectangleYCols == 0: rectangleYCols = height - rectangleY start_time = datetime.now() print('{} 开始处理文件: {}'.format(start_time.strftime('%H:%M:%S'), fname)) while True: grabbed, frame_lwpCV = camera.read() # 读取视频流 if grabbed: if counter % KeyFrame == 0: # if not grabbed: # print('{} 完成处理文件: {} 。。。 '.format(datetime.now().strftime('%H:%M:%S'),fname)) # break gray_lwpCV = cv2.cvtColor(frame_lwpCV, cv2.COLOR_BGR2GRAY) # 转灰度图 gray_lwpCV = gray_lwpCV[rectangleY:rectangleY + rectangleYCols, rectangleX:rectangleX + rectangleXCols] lwpCV_box = cv2.rectangle(frame_lwpCV, (rectangleX, rectangleY), (rectangleX + rectangleXCols, rectangleY + rectangleYCols), (0, 255, 0), 2) # 用绿色矩形框显示监测区域 # cv2.imshow('lwpCVWindow', frame_lwpCV) # 显示视频播放窗口,开启消耗时间大概是3倍 gray_lwpCV = cv2.GaussianBlur(gray_lwpCV, (21, 21), 0) if pre_frame is None: pre_frame = gray_lwpCV else: img_delta = cv2.absdiff(pre_frame, gray_lwpCV) thresh = cv2.threshold(img_delta, 25, 255, cv2.THRESH_BINARY)[1] thresh = cv2.dilate(thresh, None, iterations=2) image, contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for x in contours: if cv2.contourArea(x) < 1000: # 设置敏感度 continue else: cv2.imwrite( 'image/' + fname + '_' + datetime.now().strftime('%H%M%S') + '_' + str( random.randrange(0, 9999)) + '.jpg', frame_lwpCV) # print("监测到移动物体。。。 ", datetime.now().strftime('%H:%M:%S')) break pre_frame = gray_lwpCV counter += 1 key = cv2.waitKey(1) & 0xFF if key == ord('q'): break else: end_time = datetime.now() print('{} 完成处理文件: {} 耗时:{}'.format(end_time.strftime('%H:%M:%S'), fname, end_time - start_time)) break camera.release() # cv2.destroyAllWindows() # 与上面的imshow对应 for file in get_files(path): fname = file.split('\\')[-1].replace('.mp4', '') process(file, fname)
以上这篇python opencv 检测移动物体并截图保存实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]