快活林资源网 Design By www.csstdc.com

废话不多说,大家还是直接看代码吧!

import pandas as pd
from matplotlib import pyplot as plt
from datetime import datetime
filename='sitka_weather_2014.csv'

df=pd.read_csv(filename)
print(df.dtypes)

pandas 强制类型转换 df.astype实例

df[' Min Humidity']=df[' Min Humidity'].astype('float64')
df=df.astype({'Max Humidity':'float64','Max Dew PointF':'float64'})

print('*'*44)
print(df.dtypes)

pandas 强制类型转换 df.astype实例

补充知识:python pandas转换数据类型astype(int)报错问题

代码:

import pandas as pd
a = pd.Series([‘1.11',‘2.22'])
print(a)
a = a.astype(int)
print(a)

报错

ValueError: invalid literal for int() with base 10: ‘1.11'

代码:

import pandas as pd
a = pd.Series([‘1.11',‘2.22'])
print(a)
a = a.astype(float).astype(int)
print(a)

输出:

0 1.11
1 2.22
dtype: object
0 1
1 2
dtype: int32

原因:

astype(int)在转换数据类型时,直接将字符串转为整型数据字符串中的小数点会被认为是特殊字符而报错;

先转成浮点数据,astype(int)会把数据当做数字来进行转换。

以上这篇pandas 强制类型转换 df.astype实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

快活林资源网 Design By www.csstdc.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
快活林资源网 Design By www.csstdc.com