快活林资源网 Design By www.csstdc.com
考虑到在日常中,常常需要对模型指标输出,但涉及多个模型的时候,需要对其有标示输出,故需要将模型变量名转换成字符串。
看到的基本方法有两种:
一、方法层面:
方法1(函数内推荐):
def namestr(obj, namespace): return [name for name in namespace if namespace[name] is obj] print(namestr(lr_origin,globals()),'\n', namestr(lr_origin,globals())[0])
输出:
‘lr_origin'
方法2:
import inspect, re def varname(p): for line in inspect.getframeinfo(inspect.currentframe().f_back)[3]: m = re.search(r'\bvarname\s*\(\s*([A-Za-z_][A-Za-z0-9_]*)\s*\)', line) if m: return m.group(1) varname(lr_origin)
输出:
'lr_origin'
二、示例
采用方法1
def small_feature_model(model,X_train=X_train,y_train=y_train,X_test=X_test, y_test=y_test): pca = PCA(n_components=150,random_state=0,whiten=True) pipeline = Pipeline([('scale',StandardScaler()),('pca',pca)]) processing = pipeline.fit(X_train) X_train = processing.transform(X_train) X_test = processing.transform(X_test) model.fit(X_train, y_train) y_pred = model.predict(X_test) # print(namestr(model,globals())) print('**small-%s的准确率**: %.3f' %(namestr(model,globals())[0],accuracy_score(y_pred=y_pred, y_true=y_test))) small_feature_model(svm_origin)
输出
['svm_origin']
**small-svm_origin的准确率**: 0.789
for model in [svm_origin, svm_rbf, lr_origin]:
small_feature_model(model)
输出
**small-svm_origin的准确率**: 0.789 **small-svm_rbf的准确率**: 0.811 **small-lr_origin的准确率**: 0.835
采用方法2
def small_feature_model(model,X_train=X_train,y_train=y_train,X_test=X_test, y_test=y_test): pca = PCA(n_components=150,random_state=0,whiten=True) pipeline = Pipeline([('scale',StandardScaler()),('pca',pca)]) processing = pipeline.fit(X_train) X_train = processing.transform(X_train) X_test = processing.transform(X_test) model.fit(X_train, y_train) y_pred = model.predict(X_test) # print(namestr(model,globals())) print('**small-%s的准确率**: %.3f' %(varname(model),accuracy_score(y_pred=y_pred, y_true=y_test))) small_feature_model(svm_origin)
输出
**small-model的准确率**: 0.789
for model in [svm_origin, svm_rbf, lr_origin]:
small_feature_model(model)
输出
**small-model的准确率**: 0.789 **small-model的准确率**: 0.811 **small-model的准确率**: 0.835
补充知识:一个python实现翻转字符串的函数
实现字符串翻转的函数(python)
string = 'abcdef' def demo1(string): if len(string) <= 1: return string return demo1(string[1:]) +string[0] print(demo1(string))
中间用到了递归和切片不知道效率如何
以上这篇python函数中将变量名转换成字符串实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
快活林资源网 Design By www.csstdc.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
快活林资源网 Design By www.csstdc.com
暂无评论...
更新日志
2024年12月27日
2024年12月27日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]