首先这是VGG的结构图,VGG11则是红色框里的结构,共分五个block,如红框中的VGG11第一个block就是一个conv3-64卷积层:
一,写VGG代码时,首先定义一个 vgg_block(n,in,out)方法,用来构建VGG中每个block中的卷积核和池化层:
n是这个block中卷积层的数目,in是输入的通道数,out是输出的通道数
有了block以后,我们还需要一个方法把形成的block叠在一起,我们定义这个方法叫vgg_stack:
def vgg_stack(num_convs, channels): # vgg_net = vgg_stack((1, 1, 2, 2, 2), ((3, 64), (64, 128), (128, 256), (256, 512), (512, 512))) net = [] for n, c in zip(num_convs, channels): in_c = c[0] out_c = c[1] net.append(vgg_block(n, in_c, out_c)) return nn.Sequential(*net)
右边的注释
vgg_net = vgg_stack((1, 1, 2, 2, 2), ((3, 64), (64, 128), (128, 256), (256, 512), (512, 512)))
里,(1, 1, 2, 2, 2)表示五个block里,各自的卷积层数目,((3, 64), (64, 128), (128, 256), (256, 512), (512, 512))表示每个block中的卷积层的类型,如(3,64)表示这个卷积层输入通道数是3,输出通道数是64。vgg_stack方法返回的就是完整的vgg11模型了。
接着定义一个vgg类,包含vgg_stack方法:
#vgg类 class vgg(nn.Module): def __init__(self): super(vgg, self).__init__() self.feature = vgg_net self.fc = nn.Sequential( nn.Linear(512, 100), nn.ReLU(True), nn.Linear(100, 10) ) def forward(self, x): x = self.feature(x) x = x.view(x.shape[0], -1) x = self.fc(x) return x
最后:
net = vgg() #就能获取到vgg网络
那么构建vgg网络完整的pytorch代码是:
def vgg_block(num_convs, in_channels, out_channels): net = [nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.ReLU(True)] for i in range(num_convs - 1): # 定义后面的许多层 net.append(nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)) net.append(nn.ReLU(True)) net.append(nn.MaxPool2d(2, 2)) # 定义池化层 return nn.Sequential(*net) # 下面我们定义一个函数对这个 vgg block 进行堆叠 def vgg_stack(num_convs, channels): # vgg_net = vgg_stack((1, 1, 2, 2, 2), ((3, 64), (64, 128), (128, 256), (256, 512), (512, 512))) net = [] for n, c in zip(num_convs, channels): in_c = c[0] out_c = c[1] net.append(vgg_block(n, in_c, out_c)) return nn.Sequential(*net) #确定vgg的类型,是vgg11 还是vgg16还是vgg19 vgg_net = vgg_stack((1, 1, 2, 2, 2), ((3, 64), (64, 128), (128, 256), (256, 512), (512, 512))) #vgg类 class vgg(nn.Module): def __init__(self): super(vgg, self).__init__() self.feature = vgg_net self.fc = nn.Sequential( nn.Linear(512, 100), nn.ReLU(True), nn.Linear(100, 10) ) def forward(self, x): x = self.feature(x) x = x.view(x.shape[0], -1) x = self.fc(x) return x #获取vgg网络 net = vgg()
基于VGG11的cifar10训练代码:
import sys import numpy as np import torch from torch import nn from torch.autograd import Variable from torchvision.datasets import CIFAR10 import torchvision.transforms as transforms def vgg_block(num_convs, in_channels, out_channels): net = [nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.ReLU(True)] for i in range(num_convs - 1): # 定义后面的许多层 net.append(nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)) net.append(nn.ReLU(True)) net.append(nn.MaxPool2d(2, 2)) # 定义池化层 return nn.Sequential(*net) # 下面我们定义一个函数对这个 vgg block 进行堆叠 def vgg_stack(num_convs, channels): # vgg_net = vgg_stack((1, 1, 2, 2, 2), ((3, 64), (64, 128), (128, 256), (256, 512), (512, 512))) net = [] for n, c in zip(num_convs, channels): in_c = c[0] out_c = c[1] net.append(vgg_block(n, in_c, out_c)) return nn.Sequential(*net) #vgg类 class vgg(nn.Module): def __init__(self): super(vgg, self).__init__() self.feature = vgg_net self.fc = nn.Sequential( nn.Linear(512, 100), nn.ReLU(True), nn.Linear(100, 10) ) def forward(self, x): x = self.feature(x) x = x.view(x.shape[0], -1) x = self.fc(x) return x # 然后我们可以训练我们的模型看看在 cifar10 上的效果 def data_tf(x): x = np.array(x, dtype='float32') / 255 x = (x - 0.5) / 0.5 x = x.transpose((2, 0, 1)) ## 将 channel 放到第一维,只是 pytorch 要求的输入方式 x = torch.from_numpy(x) return x transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), ]) def get_acc(output, label): total = output.shape[0] _, pred_label = output.max(1) num_correct = (pred_label == label).sum().item() return num_correct / total def train(net, train_data, valid_data, num_epochs, optimizer, criterion): if torch.cuda.is_available(): net = net.cuda() for epoch in range(num_epochs): train_loss = 0 train_acc = 0 net = net.train() for im, label in train_data: if torch.cuda.is_available(): im = Variable(im.cuda()) label = Variable(label.cuda()) else: im = Variable(im) label = Variable(label) # forward output = net(im) loss = criterion(output, label) # forward optimizer.zero_grad() loss.backward() optimizer.step() train_loss += loss.item() train_acc += get_acc(output, label) if valid_data is not None: valid_loss = 0 valid_acc = 0 net = net.eval() for im, label in valid_data: if torch.cuda.is_available(): with torch.no_grad(): im = Variable(im.cuda()) label = Variable(label.cuda()) else: with torch.no_grad(): im = Variable(im) label = Variable(label) output = net(im) loss = criterion(output, label) valid_loss += loss.item() valid_acc += get_acc(output, label) epoch_str = ( "Epoch %d. Train Loss: %f, Train Acc: %f, Valid Loss: %f, Valid Acc: %f, " % (epoch, train_loss / len(train_data), train_acc / len(train_data), valid_loss / len(valid_data), valid_acc / len(valid_data))) else: epoch_str = ("Epoch %d. Train Loss: %f, Train Acc: %f, " % (epoch, train_loss / len(train_data), train_acc / len(train_data))) # prev_time = cur_time print(epoch_str) if __name__ == '__main__': # 作为实例,我们定义一个稍微简单一点的 vgg11 结构,其中有 8 个卷积层 vgg_net = vgg_stack((1, 1, 2, 2, 2), ((3, 64), (64, 128), (128, 256), (256, 512), (512, 512))) print(vgg_net) train_set = CIFAR10('./data', train=True, transform=transform, download=True) train_data = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True) test_set = CIFAR10('./data', train=False, transform=transform, download=True) test_data = torch.utils.data.DataLoader(test_set, batch_size=128, shuffle=False) net = vgg() optimizer = torch.optim.SGD(net.parameters(), lr=1e-1) criterion = nn.CrossEntropyLoss() #损失函数为交叉熵 train(net, train_data, test_data, 50, optimizer, criterion) torch.save(net, 'vgg_model.pth')
结束后,会出现一个模型文件vgg_model.pth
二,然后网上找张图片,把图片缩成32x32,放到预测代码中,即可有预测结果出现,预测代码如下:
import torch import cv2 import torch.nn.functional as F from vgg2 import vgg ##重要,虽然显示灰色(即在次代码中没用到),但若没有引入这个模型代码,加载模型时会找不到模型 from torch.autograd import Variable from torchvision import datasets, transforms import numpy as np classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') if __name__ == '__main__': device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = torch.load('vgg_model.pth') # 加载模型 model = model.to(device) model.eval() # 把模型转为test模式 img = cv2.imread("horse.jpg") # 读取要预测的图片 trans = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) ]) img = trans(img) img = img.to(device) img = img.unsqueeze(0) # 图片扩展多一维,因为输入到保存的模型中是4维的[batch_size,通道,长,宽],而普通图片只有三维,[通道,长,宽] # 扩展后,为[1,1,28,28] output = model(img) prob = F.softmax(output,dim=1) #prob是10个分类的概率 print(prob) value, predicted = torch.max(output.data, 1) print(predicted.item()) print(value) pred_class = classes[predicted.item()] print(pred_class) # prob = F.softmax(output, dim=1) # prob = Variable(prob) # prob = prob.cpu().numpy() # 用GPU的数据训练的模型保存的参数都是gpu形式的,要显示则先要转回cpu,再转回numpy模式 # print(prob) # prob是10个分类的概率 # pred = np.argmax(prob) # 选出概率最大的一个 # # print(pred) # # print(pred.item()) # pred_class = classes[pred] # print(pred_class)
缩成32x32的图片:
运行结果:
以上这篇pytorch VGG11识别cifar10数据集(训练+预测单张输入图片操作)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]