快活林资源网 Design By www.csstdc.com

解决了以下错误:

1.ValueError: Input 0 is incompatible with layer conv1d_1: expected ndim=3, found ndim=4

2.ValueError: Error when checking target: expected dense_3 to have 3 dimensions, but got array with …

1.ValueError: Input 0 is incompatible with layer conv1d_1: expected ndim=3, found ndim=4

错误代码:

model.add(Conv1D(8, kernel_size=3, strides=1, padding='same', input_shape=(x_train.shape))

或者

model.add(Conv1D(8, kernel_size=3, strides=1, padding='same', input_shape=(x_train.shape[1:])))

这是因为模型输入的维数有误,在使用基于tensorflow的keras中,cov1d的input_shape是二维的,应该:

1、reshape x_train的形状

x_train=x_train.reshape((x_train.shape[0],x_train.shape[1],1))
x_test = x_test.reshape((x_test.shape[0], x_test.shape[1],1))

2、改变input_shape

model = Sequential()
model.add(Conv1D(8, kernel_size=3, strides=1, padding='same', input_shape=(x_train.shape[1],1)))

大神原文:

The input shape is wrong, it should be input_shape = (1, 3253) for Theano or (3253, 1) for TensorFlow. The input shape doesn't include the number of samples.

Then you need to reshape your data to include the channels axis:

x_train = x_train.reshape((500000, 1, 3253))

Or move the channels dimension to the end if you use TensorFlow. After these changes it should work.

2.ValueError: Error when checking target: expected dense_3 to have 3 dimensions, but got array with …

出现此问题是因为ylabel的维数与x_train x_test不符,既然将x_train x_test都reshape了,那么也需要对y进行reshape。

解决办法:

同时对照x_train改变ylabel的形状

t_train=t_train.reshape((t_train.shape[0],1))
t_test = t_test.reshape((t_test.shape[0],1))

附:

修改完的代码:

import warnings
warnings.filterwarnings("ignore")
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

import pandas as pd
import numpy as np
import matplotlib
# matplotlib.use('Agg')
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn import preprocessing

from keras.models import Sequential
from keras.layers import Dense, Dropout, BatchNormalization, Activation, Flatten, Conv1D
from keras.callbacks import LearningRateScheduler, EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
from keras import optimizers
from keras.regularizers import l2
from keras.models import load_model
df_train = pd.read_csv('./input/train_V2.csv')
df_test = pd.read_csv('./input/test_V2.csv')
df_train.drop(df_train.index[[2744604]],inplace=True)#去掉nan值
df_train["distance"] = df_train["rideDistance"]+df_train["walkDistance"]+df_train["swimDistance"]
# df_train["healthpack"] = df_train["boosts"] + df_train["heals"]
df_train["skill"] = df_train["headshotKills"]+df_train["roadKills"]
df_test["distance"] = df_test["rideDistance"]+df_test["walkDistance"]+df_test["swimDistance"]
# df_test["healthpack"] = df_test["boosts"] + df_test["heals"]
df_test["skill"] = df_test["headshotKills"]+df_test["roadKills"]

df_train_size = df_train.groupby(['matchId','groupId']).size().reset_index(name='group_size')
df_test_size = df_test.groupby(['matchId','groupId']).size().reset_index(name='group_size')

df_train_mean = df_train.groupby(['matchId','groupId']).mean().reset_index()
df_test_mean = df_test.groupby(['matchId','groupId']).mean().reset_index()

df_train = pd.merge(df_train, df_train_mean, suffixes=["", "_mean"], how='left', on=['matchId', 'groupId'])
df_test = pd.merge(df_test, df_test_mean, suffixes=["", "_mean"], how='left', on=['matchId', 'groupId'])
del df_train_mean
del df_test_mean

df_train = pd.merge(df_train, df_train_size, how='left', on=['matchId', 'groupId'])
df_test = pd.merge(df_test, df_test_size, how='left', on=['matchId', 'groupId'])
del df_train_size
del df_test_size

target = 'winPlacePerc'
train_columns = list(df_test.columns)
""" remove some columns """
train_columns.remove("Id")
train_columns.remove("matchId")
train_columns.remove("groupId")
train_columns_new = []
for name in train_columns:
 if '_' in name:
  train_columns_new.append(name)
train_columns = train_columns_new
# print(train_columns)

X = df_train[train_columns]
Y = df_test[train_columns]
T = df_train[target]

del df_train
x_train, x_test, t_train, t_test = train_test_split(X, T, test_size = 0.2, random_state = 1234)

# scaler = preprocessing.MinMaxScaler(feature_range=(-1, 1)).fit(x_train)
scaler = preprocessing.QuantileTransformer().fit(x_train)

x_train = scaler.transform(x_train)
x_test = scaler.transform(x_test)
Y = scaler.transform(Y)
x_train=x_train.reshape((x_train.shape[0],x_train.shape[1],1))
x_test = x_test.reshape((x_test.shape[0], x_test.shape[1],1))
t_train=t_train.reshape((t_train.shape[0],1))
t_test = t_test.reshape((t_test.shape[0],1))

model = Sequential()
model.add(Conv1D(8, kernel_size=3, strides=1, padding='same', input_shape=(x_train.shape[1],1)))
model.add(BatchNormalization())
model.add(Conv1D(8, kernel_size=3, strides=1, padding='same'))
model.add(Conv1D(16, kernel_size=3, strides=1, padding='valid'))
model.add(BatchNormalization())
model.add(Conv1D(16, kernel_size=3, strides=1, padding='same'))
model.add(Conv1D(32, kernel_size=3, strides=1, padding='valid'))
model.add(BatchNormalization())
model.add(Conv1D(32, kernel_size=3, strides=1, padding='same'))
model.add(Conv1D(32, kernel_size=3, strides=1, padding='same'))
model.add(Conv1D(64, kernel_size=3, strides=1, padding='same'))
model.add(Activation('tanh'))
model.add(Flatten())
model.add(Dropout(0.5))
# model.add(Dropout(0.25))
model.add(Dense(512,kernel_initializer='he_normal', activation='relu', W_regularizer=l2(0.01)))
model.add(Dense(128,kernel_initializer='he_normal', activation='relu', W_regularizer=l2(0.01)))
model.add(Dense(1, kernel_initializer='normal', activation='sigmoid'))

optimizers.Adam(lr=0.01, epsilon=1e-8, decay=1e-4)

model.compile(optimizer=optimizer, loss='mse', metrics=['mae'])
model.summary()

ng = EarlyStopping(monitor='val_mean_absolute_error', mode='min', patience=4, verbose=1)
# model_checkpoint = ModelCheckpoint(filepath='best_model.h5', monitor='val_mean_absolute_error', mode = 'min', save_best_only=True, verbose=1)
# reduce_lr = ReduceLROnPlateau(monitor='val_mean_absolute_error', mode = 'min',factor=0.5, patience=3, min_lr=0.0001, verbose=1)
history = model.fit(x_train, t_train,
     validation_data=(x_test, t_test),
     epochs=30,
     batch_size=32768,
     callbacks=[early_stopping],
     verbose=1)predict(Y)
pred = pred.ravel()

补充知识:Keras Conv1d 参数及输入输出详解

Conv1d(in_channels,out_channels,kernel_size,stride=1,padding=0,dilation=1,groups=1,bias=True)

filters:卷积核的数目(即输出的维度)

kernel_size: 整数或由单个整数构成的list/tuple,卷积核的空域或时域窗长度

strides: 整数或由单个整数构成的list/tuple,为卷积的步长。任何不为1的strides均为任何不为1的dilation_rata均不兼容

padding: 补0策略,为”valid”,”same”或”casual”,”casual”将产生因果(膨胀的)卷积,即output[t]不依赖于input[t+1:]。当对不能违反事件顺序的时序信号建模时有用。“valid”代表只进行有效的卷积,即对边界数据不处理。“same”代表保留边界处的卷积结果,通常会导致输出shape与输入shape相同。

activation:激活函数,为预定义的激活函数名,或逐元素的Theano函数。如果不指定该函数,将不会使用任何激活函数(即使用线性激活函数:a(x)=x)

model.add(Conv1D(filters=nn_params["input_filters"],
      kernel_size=nn_params["filter_length"],
      strides=1,
      padding='valid',
      activation=nn_params["activation"],
      kernel_regularizer=l2(nn_params["reg"])))

例:输入维度为(None,1000,4)

第一维度:None

第二维度:

output_length = int((input_length - nn_params["filter_length"] + 1))

在此情况下为:

output_length = (1000 + 2*padding - filters +1)/ strides = (1000 + 2*0 -32 +1)/1 = 969

第三维度:filters

以上这篇解决keras使用cov1D函数的输入问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

快活林资源网 Design By www.csstdc.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
快活林资源网 Design By www.csstdc.com

P70系列延期,华为新旗舰将在下月发布

3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。

而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?

根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。