快活林资源网 Design By www.csstdc.com
我就废话不多说了,大家还是直接看代码吧~
import tensorflow as tf from sklearn.metrics import roc_auc_score def auroc(y_true, y_pred): return tf.py_func(roc_auc_score, (y_true, y_pred), tf.double) # Build Model... model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy', auroc])
完整例子:
def auc(y_true, y_pred): auc = tf.metrics.auc(y_true, y_pred)[1] K.get_session().run(tf.local_variables_initializer()) return auc def create_model_nn(in_dim,layer_size=200): model = Sequential() model.add(Dense(layer_size,input_dim=in_dim, kernel_initializer='normal')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(0.3)) for i in range(2): model.add(Dense(layer_size)) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(0.3)) model.add(Dense(1, activation='sigmoid')) adam = optimizers.Adam(lr=0.01) model.compile(optimizer=adam,loss='binary_crossentropy',metrics = [auc]) return model ####cv train folds = StratifiedKFold(n_splits=5, shuffle=False, random_state=15) oof = np.zeros(len(df_train)) predictions = np.zeros(len(df_test)) for fold_, (trn_idx, val_idx) in enumerate(folds.split(df_train.values, target2.values)): print("fold n°{}".format(fold_)) X_train = df_train.iloc[trn_idx][features] y_train = target2.iloc[trn_idx] X_valid = df_train.iloc[val_idx][features] y_valid = target2.iloc[val_idx] model_nn = create_model_nn(X_train.shape[1]) callback = EarlyStopping(monitor="val_auc", patience=50, verbose=0, mode='max') history = model_nn.fit(X_train, y_train, validation_data = (X_valid ,y_valid),epochs=1000,batch_size=64,verbose=0,callbacks=[callback]) print('\n Validation Max score : {}'.format(np.max(history.history['val_auc']))) predictions += model_nn.predict(df_test[features]).ravel()/folds.n_splits
补充知识:Keras可使用的评价函数
1:binary_accuracy(对二分类问题,计算在所有预测值上的平均正确率)
binary_accuracy(y_true, y_pred)
2:categorical_accuracy(对多分类问题,计算在所有预测值上的平均正确率)
categorical_accuracy(y_true, y_pred)
3:sparse_categorical_accuracy(与categorical_accuracy相同,在对稀疏的目标值预测时有用 )
sparse_categorical_accuracy(y_true, y_pred)
4:top_k_categorical_accuracy(计算top-k正确率,当预测值的前k个值中存在目标类别即认为预测正确 )
top_k_categorical_accuracy(y_true, y_pred, k=5)
5:sparse_top_k_categorical_accuracy(与top_k_categorical_accracy作用相同,但适用于稀疏情况)
sparse_top_k_categorical_accuracy(y_true, y_pred, k=5)
以上这篇keras用auc做metrics以及早停实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
快活林资源网 Design By www.csstdc.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
快活林资源网 Design By www.csstdc.com
暂无评论...
更新日志
2024年12月25日
2024年12月25日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]