快活林资源网 Design By www.csstdc.com
import numpy as np import sys def conv_(img, conv_filter): filter_size = conv_filter.shape[1] result = np.zeros((img.shape)) # 循环遍历图像以应用卷积运算 for r in np.uint16(np.arange(filter_size/2.0, img.shape[0]-filter_size/2.0+1)): for c in np.uint16(np.arange(filter_size/2.0, img.shape[1]-filter_size/2.0+1)): # 卷积的区域 curr_region = img[r-np.uint16(np.floor(filter_size/2.0)):r+np.uint16(np.ceil(filter_size/2.0)), c-np.uint16(np.floor(filter_size/2.0)):c+np.uint16(np.ceil(filter_size/2.0))] # 卷积操作 curr_result = curr_region * conv_filter conv_sum = np.sum(curr_result) # 将求和保存到特征图中 result[r, c] = conv_sum # 裁剪结果矩阵的异常值 final_result = result[np.uint16(filter_size/2.0):result.shape[0]-np.uint16(filter_size/2.0), np.uint16(filter_size/2.0):result.shape[1]-np.uint16(filter_size/2.0)] return final_result def conv(img, conv_filter): # 检查图像通道的数量是否与过滤器深度匹配 if len(img.shape) > 2 or len(conv_filter.shape) > 3: if img.shape[-1] != conv_filter.shape[-1]: print("错误:图像和过滤器中的通道数必须匹配") sys.exit() # 检查过滤器是否是方阵 if conv_filter.shape[1] != conv_filter.shape[2]: print('错误:过滤器必须是方阵') sys.exit() # 检查过滤器大小是否是奇数 if conv_filter.shape[1] % 2 == 0: print('错误:过滤器大小必须是奇数') sys.exit() # 定义一个空的特征图,用于保存过滤器与图像的卷积输出 feature_maps = np.zeros((img.shape[0] - conv_filter.shape[1] + 1, img.shape[1] - conv_filter.shape[1] + 1, conv_filter.shape[0])) # 卷积操作 for filter_num in range(conv_filter.shape[0]): print("Filter ", filter_num + 1) curr_filter = conv_filter[filter_num, :] # 检查单个过滤器是否有多个通道。如果有,那么每个通道将对图像进行卷积。所有卷积的结果加起来得到一个特征图。 if len(curr_filter.shape) > 2: conv_map = conv_(img[:, :, 0], curr_filter[:, :, 0]) for ch_num in range(1, curr_filter.shape[-1]): conv_map = conv_map + conv_(img[:, :, ch_num], curr_filter[:, :, ch_num]) else: conv_map = conv_(img, curr_filter) feature_maps[:, :, filter_num] = conv_map return feature_maps def pooling(feature_map, size=2, stride=2): # 定义池化操作的输出 pool_out = np.zeros((np.uint16((feature_map.shape[0] - size + 1) / stride + 1), np.uint16((feature_map.shape[1] - size + 1) / stride + 1), feature_map.shape[-1])) for map_num in range(feature_map.shape[-1]): r2 = 0 for r in np.arange(0, feature_map.shape[0] - size + 1, stride): c2 = 0 for c in np.arange(0, feature_map.shape[1] - size + 1, stride): pool_out[r2, c2, map_num] = np.max([feature_map[r: r+size, c: c+size, map_num]]) c2 = c2 + 1 r2 = r2 + 1 return pool_out
import skimage.data import numpy import matplotlib import matplotlib.pyplot as plt import NumPyCNN as numpycnn # 读取图像 img = skimage.data.chelsea() # 转成灰度图像 img = skimage.color.rgb2gray(img) # 初始化卷积核 l1_filter = numpy.zeros((2, 3, 3)) # 检测垂直边缘 l1_filter[0, :, :] = numpy.array([[[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]]) # 检测水平边缘 l1_filter[1, :, :] = numpy.array([[[1, 1, 1], [0, 0, 0], [-1, -1, -1]]]) """ 第一个卷积层 """ # 卷积操作 l1_feature_map = numpycnn.conv(img, l1_filter) # ReLU l1_feature_map_relu = numpycnn.relu(l1_feature_map) # Pooling l1_feature_map_relu_pool = numpycnn.pooling(l1_feature_map_relu, 2, 2) """ 第二个卷积层 """ # 初始化卷积核 l2_filter = numpy.random.rand(3, 5, 5, l1_feature_map_relu_pool.shape[-1]) # 卷积操作 l2_feature_map = numpycnn.conv(l1_feature_map_relu_pool, l2_filter) # ReLU l2_feature_map_relu = numpycnn.relu(l2_feature_map) # Pooling l2_feature_map_relu_pool = numpycnn.pooling(l2_feature_map_relu, 2, 2) """ 第三个卷积层 """ # 初始化卷积核 l3_filter = numpy.random.rand(1, 7, 7, l2_feature_map_relu_pool.shape[-1]) # 卷积操作 l3_feature_map = numpycnn.conv(l2_feature_map_relu_pool, l3_filter) # ReLU l3_feature_map_relu = numpycnn.relu(l3_feature_map) # Pooling l3_feature_map_relu_pool = numpycnn.pooling(l3_feature_map_relu, 2, 2) """ 结果可视化 """ fig0, ax0 = plt.subplots(nrows=1, ncols=1) ax0.imshow(img).set_cmap("gray") ax0.set_title("Input Image") ax0.get_xaxis().set_ticks([]) ax0.get_yaxis().set_ticks([]) plt.savefig("in_img1.png", bbox_inches="tight") plt.close(fig0) # 第一层 fig1, ax1 = plt.subplots(nrows=3, ncols=2) ax1[0, 0].imshow(l1_feature_map[:, :, 0]).set_cmap("gray") ax1[0, 0].get_xaxis().set_ticks([]) ax1[0, 0].get_yaxis().set_ticks([]) ax1[0, 0].set_title("L1-Map1") ax1[0, 1].imshow(l1_feature_map[:, :, 1]).set_cmap("gray") ax1[0, 1].get_xaxis().set_ticks([]) ax1[0, 1].get_yaxis().set_ticks([]) ax1[0, 1].set_title("L1-Map2") ax1[1, 0].imshow(l1_feature_map_relu[:, :, 0]).set_cmap("gray") ax1[1, 0].get_xaxis().set_ticks([]) ax1[1, 0].get_yaxis().set_ticks([]) ax1[1, 0].set_title("L1-Map1ReLU") ax1[1, 1].imshow(l1_feature_map_relu[:, :, 1]).set_cmap("gray") ax1[1, 1].get_xaxis().set_ticks([]) ax1[1, 1].get_yaxis().set_ticks([]) ax1[1, 1].set_title("L1-Map2ReLU") ax1[2, 0].imshow(l1_feature_map_relu_pool[:, :, 0]).set_cmap("gray") ax1[2, 0].get_xaxis().set_ticks([]) ax1[2, 0].get_yaxis().set_ticks([]) ax1[2, 0].set_title("L1-Map1ReLUPool") ax1[2, 1].imshow(l1_feature_map_relu_pool[:, :, 1]).set_cmap("gray") ax1[2, 0].get_xaxis().set_ticks([]) ax1[2, 0].get_yaxis().set_ticks([]) ax1[2, 1].set_title("L1-Map2ReLUPool") plt.savefig("L1.png", bbox_inches="tight") plt.close(fig1) # 第二层 fig2, ax2 = plt.subplots(nrows=3, ncols=3) ax2[0, 0].imshow(l2_feature_map[:, :, 0]).set_cmap("gray") ax2[0, 0].get_xaxis().set_ticks([]) ax2[0, 0].get_yaxis().set_ticks([]) ax2[0, 0].set_title("L2-Map1") ax2[0, 1].imshow(l2_feature_map[:, :, 1]).set_cmap("gray") ax2[0, 1].get_xaxis().set_ticks([]) ax2[0, 1].get_yaxis().set_ticks([]) ax2[0, 1].set_title("L2-Map2") ax2[0, 2].imshow(l2_feature_map[:, :, 2]).set_cmap("gray") ax2[0, 2].get_xaxis().set_ticks([]) ax2[0, 2].get_yaxis().set_ticks([]) ax2[0, 2].set_title("L2-Map3") ax2[1, 0].imshow(l2_feature_map_relu[:, :, 0]).set_cmap("gray") ax2[1, 0].get_xaxis().set_ticks([]) ax2[1, 0].get_yaxis().set_ticks([]) ax2[1, 0].set_title("L2-Map1ReLU") ax2[1, 1].imshow(l2_feature_map_relu[:, :, 1]).set_cmap("gray") ax2[1, 1].get_xaxis().set_ticks([]) ax2[1, 1].get_yaxis().set_ticks([]) ax2[1, 1].set_title("L2-Map2ReLU") ax2[1, 2].imshow(l2_feature_map_relu[:, :, 2]).set_cmap("gray") ax2[1, 2].get_xaxis().set_ticks([]) ax2[1, 2].get_yaxis().set_ticks([]) ax2[1, 2].set_title("L2-Map3ReLU") ax2[2, 0].imshow(l2_feature_map_relu_pool[:, :, 0]).set_cmap("gray") ax2[2, 0].get_xaxis().set_ticks([]) ax2[2, 0].get_yaxis().set_ticks([]) ax2[2, 0].set_title("L2-Map1ReLUPool") ax2[2, 1].imshow(l2_feature_map_relu_pool[:, :, 1]).set_cmap("gray") ax2[2, 1].get_xaxis().set_ticks([]) ax2[2, 1].get_yaxis().set_ticks([]) ax2[2, 1].set_title("L2-Map2ReLUPool") ax2[2, 2].imshow(l2_feature_map_relu_pool[:, :, 2]).set_cmap("gray") ax2[2, 2].get_xaxis().set_ticks([]) ax2[2, 2].get_yaxis().set_ticks([]) ax2[2, 2].set_title("L2-Map3ReLUPool") plt.savefig("L2.png", bbox_inches="tight") plt.close(fig2) # 第三层 fig3, ax3 = plt.subplots(nrows=1, ncols=3) ax3[0].imshow(l3_feature_map[:, :, 0]).set_cmap("gray") ax3[0].get_xaxis().set_ticks([]) ax3[0].get_yaxis().set_ticks([]) ax3[0].set_title("L3-Map1") ax3[1].imshow(l3_feature_map_relu[:, :, 0]).set_cmap("gray") ax3[1].get_xaxis().set_ticks([]) ax3[1].get_yaxis().set_ticks([]) ax3[1].set_title("L3-Map1ReLU") ax3[2].imshow(l3_feature_map_relu_pool[:, :, 0]).set_cmap("gray") ax3[2].get_xaxis().set_ticks([]) ax3[2].get_yaxis().set_ticks([]) ax3[2].set_title("L3-Map1ReLUPool") plt.savefig("L3.png", bbox_inches="tight") plt.close(fig3)
以上就是Numpy实现卷积神经网络(CNN)的示例的详细内容,更多关于Numpy实现卷积神经网络的资料请关注其它相关文章!
快活林资源网 Design By www.csstdc.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
快活林资源网 Design By www.csstdc.com
暂无评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
2024年12月24日
2024年12月24日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]