粒子群算法
粒子群算法源于复杂适应系统(Complex Adaptive System,CAS)。CAS理论于1994年正式提出,CAS中的成员称为主体。比如研究鸟群系统,每个鸟在这个系统中就称为主体。主体有适应性,它能够与环境及其他的主体进行交流,并且根据交流的过程“学习”或“积累经验”改变自身结构与行为。整个系统的演变或进化包括:新层次的产生(小鸟的出生);分化和多样性的出现(鸟群中的鸟分成许多小的群);新的主题的出现(鸟寻找食物过程中,不断发现新的食物)。
PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更新自己。
在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。
i 表示第 i 个粒子, d 表示粒子的第 d 个维度。r1, r2 表示两个位于 [0, 1] 的随机数(对于一个粒子的不同维度,r1, r2 的值不同)。pbest[i] 是指粒子取得最高(低)适应度时的位置,gbest[i] 指的是整个系统取得最高(低)适应度时的位置。
实践
我们用 PSO 算法求解如下函数的最小值
可以在空间画出图像
下图是使用 5 个粒子的收敛情况
可以看到,fitness 在第 12 轮就几乎收敛到 -10.0。
下面是完整代码
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D INF = 1e5 def plot_cost_func(): """画出适应度函数""" fig = plt.figure() ax = Axes3D(fig) X = np.arange(-4, 4, 0.25) Y = np.arange(-4, 4, 0.25) X, Y = np.meshgrid(X, Y) Z = (X**2 + Y**2) - 10 ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow') plt.show() def fitness(x): return x[0]**2 + x[1]**2 - 10 class PSOSolver(object): def __init__(self, n_iter, weight=0.5, c1=2, c2=2, n_particle=5): self.n_iter = n_iter self.weight = weight self.c1 = c1 self.c2 = c2 self.n_particle = n_particle self.gbest = np.random.rand(2) # gbest 对应的函数值 self.gbest_fit = fitness(self.gbest) # 将位置初始化到 [-5, 5] self.location = 10 * np.random.rand(n_particle, 2) - 5 # 将速度初始化到 [-1, 1] self.velocity = 2 * np.random.rand(n_particle, 2) - 1 self.pbest_fit = np.tile(INF, n_particle) self.pbest = np.zeros((n_particle, 2)) # 记录每一步的最优值 self.best_fitness = [] def new_velocity(self, i): r = np.random.rand(2, 2) v = self.velocity[i] x = self.location[i] pbest = self.pbest[i] return self.weight * v + self.c1 * r[0] * (pbest - x) + self.c2 * r[1] * (self.gbest - x) def solve(self): for it in range(self.n_iter): for i in range(self.n_particle): v = self.new_velocity(i) x = self.location[i] + v fit_i = fitness(x) if fit_i < self.pbest_fit[i]: self.pbest_fit[i] = fit_i self.pbest[i] = x if fit_i < self.gbest_fit: self.gbest_fit = fit_i self.gbest = x self.velocity[i] = v self.location[i] = x self.best_fitness.append(self.gbest_fit) if __name__ == '__main__': plot_cost_func() n_iter = 20 s = PSOSolver(n_iter) s.solve() print(s.gbest_fit) plt.title("Fitness Curve") plt.xlabel("iter") plt.ylabel("fitness") plt.plot(np.arange(n_iter), np.array(s.best_fitness)) plt.show()
以上就是python实现粒子群算法的详细内容,更多关于python 粒子群算法的资料请关注其它相关文章!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]