简介:轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法,所以边缘提取的阈值选定会影响最终轮廓发现结果。
代码如下:
import cv2 as cv import numpy as np def contours_demo(image): dst = cv.GaussianBlur(image, (3, 3), 0) #高斯模糊去噪 gray = cv.cvtColor(dst, cv.COLOR_RGB2GRAY) ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU) #用大律法、全局自适应阈值方法进行图像二值化 cv.imshow("binary image", binary) cloneTmage, contours, heriachy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) for i, contour in enumerate(contours): cv.drawContours(image, contours, i, (0, 0, 255), 2) print(i) cv.imshow("contours", image) for i, contour in enumerate(contours): cv.drawContours(image, contours, i, (0, 0, 255), -1) cv.imshow("pcontours", image) src = cv.imread('E:/imageload/coins.jpg') cv.namedWindow('input_image', cv.WINDOW_NORMAL) #设置为WINDOW_NORMAL可以任意缩放 cv.imshow('input_image', src) contours_demo(src) cv.waitKey(0) cv.destroyAllWindows()
运行结果:
注意:
1.Opencv发现轮廓的函数原型为:findContours(image, mode, method[, contours[, hierarchy[, offset]]]) -> image, contours, hierarchy
image参数表示8位单通道图像矩阵,可以是灰度图,但更常用的是二值图像,一般是经过Canny、拉普拉斯等边缘检测算子处理过的二值图像。
mode参数表示轮廓检索模式:
①CV_RETR_EXTERNAL:只检测最外围轮廓,包含在外围轮廓内的内围轮廓被忽略。
②CV_RETR_LIST:检测所有的轮廓,包括内围、外围轮廓,但是检测到的轮廓不建立等级关系,彼此之间独立,没有等级关系,这就意味着这个检索模式下不存在父轮廓或内嵌轮廓。
③CV_RETR_CCOMP:检测所有的轮廓,但所有轮廓只建立两个等级关系,外围为顶层,若外围内的内围轮廓还包含了其他的轮廓信息,则内围内的所有轮廓均归属于顶层。
④CV_RETR_TREE:检测所有轮廓,所有轮廓建立一个等级树结构,外层轮廓包含内层轮廓,内层轮廓还可以继续包含内嵌轮廓。
method参数表示轮廓的近似方法:
①CV_CHAIN_APPROX_NONE 存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max (abs (x1 - x2), abs(y2 - y1) == 1。
②CV_CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息。
③CV_CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS使用teh-Chinl chain 近似算法。
contours参数是一个list,表示存储的每个轮廓的点集合。
hierarchy参数是一个list,list中元素个数和轮廓个数相同,每个轮廓contours[i]对应4个hierarchy元素hierarchy[i][0] ~hierarchy[i][3],分别表示后一个轮廓、前一个轮廓、父轮廓、内嵌轮廓的索引编号,如果没有对应项,则该值为负数。
offset参数表示每个轮廓点移动的可选偏移量。
2.Opencv绘制轮廓的函数原型为:drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset]]]]]) -> image
imgae参数表示目标图像。
contours参数表示所有输入轮廓。
contourIdx参数表示绘制轮廓list中的哪条轮廓, 如果是负数,则绘制所有轮廓。
color参数表示轮廓的颜色。
thickness参数表示绘制的轮廓线条粗细,如果是负数,则绘制轮廓内部。
lineType参数表示线型。
hierarchy参数表示有关层次结构的可选信息。
maxLevel参数表示绘制轮廓的最大级别。 如果为0,则仅绘制指定的轮廓。 如果为1,则该函数绘制轮廓和所有嵌套轮廓。 如果为2,则该函数绘制轮廓,所有嵌套轮廓,所有嵌套到嵌套的轮廓,等等。 仅当有可用的层次结构时才考虑此参数。
offset参数表示可选的轮廓偏移参数,该参数可按指定的方式移动所有绘制的轮廓。
以上就是Python+OpenCV图像处理——实现轮廓发现的详细内容,更多关于python 轮廓发现的资料请关注其它相关文章!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]