快活林资源网 Design By www.csstdc.com

本文介绍以下内容:
1. 使用transformers框架做预训练的bert-base模型;
2. 开发平台使用Google的Colab平台,白嫖GPU加速;
3. 使用datasets模块下载IMDB影评数据作为训练数据。

transformers模块简介

transformers框架为Huggingface开源的深度学习框架,支持几乎所有的Transformer架构的预训练模型。使用非常的方便,本文基于此框架,尝试一下预训练模型的使用,简单易用。

本来打算预训练bert-large模型,发现colab上GPU显存不够用,只能使用base版本了。打开colab,并且设置好GPU加速,接下来开始介绍代码。

代码实现

首先安装数据下载模块和transformers包。

pip install datasets
pip install transformers

使用datasets下载IMDB数据,返回DatasetDict类型的数据.返回的数据是文本类型,需要进行编码。下面会使用tokenizer进行编码。

from datasets import load_dataset

imdb = load_dataset('imdb')
print(imdb['train'][:3]) # 打印前3条训练数据

接下来加载tokenizer和模型.从transformers导入AutoModelForSequenceClassification, AutoTokenizer,创建模型和tokenizer。

from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_checkpoint = "bert-base-uncased"

tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=2)

对原始数据进行编码,并且分批次(batch)

def preprocessing_func(examples):
  return tokenizer(examples['text'], 
           padding=True,
           truncation=True, max_length=300)

batch_size = 16

encoded_data = imdb.map(preprocessing_func, batched=True, batch_size=batch_size)

上面得到编码数据,每个批次设置为16.接下来需要指定训练的参数,训练参数的指定使用transformers给出的接口类TrainingArguments,模型的训练可以使用Trainer。

from transformers import Trainer, TrainingArguments

args = TrainingArguments(
  'out',
  per_device_train_batch_size=batch_size,
  per_device_eval_batch_size=batch_size,
  learning_rate=5e-5,
  evaluation_strategy='epoch',
  num_train_epochs=10,
  load_best_model_at_end=True,
)

trainer = Trainer(
  model,
  args=args,
  train_dataset=encoded_data['train'],
  eval_dataset=encoded_data['test'],
  tokenizer=tokenizer
)

训练模型使用trainer对象的train方法

trainer.train()

PyTorch预训练Bert模型的示例

评估模型使用trainer对象的evaluate方法

trainer.evaluate()

总结

本文介绍了基于transformers框架实现的bert预训练模型,此框架提供了非常友好的接口,可以方便读者尝试各种预训练模型。同时datasets也提供了很多数据集,便于学习NLP的各种问题。加上Google提供的colab环境,数据下载和预训练模型下载都非常快,建议读者自行去炼丹。本文完整的案例下载

以上就是PyTorch预训练Bert模型的示例的详细内容,更多关于PyTorch预训练Bert模型的资料请关注其它相关文章!

快活林资源网 Design By www.csstdc.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
快活林资源网 Design By www.csstdc.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?