快活林资源网 Design By www.csstdc.com

HDF5 简介

HDF(Hierarchical Data Format)指一种为存储和处理大容量科学数据设计的文件格式及相应库文件。HDF 最早由美国国家超级计算应用中心 NCSA 开发,目前在非盈利组织 HDF 小组维护下继续发展。当前流行的版本是 HDF5。HDF5 拥有一系列的优异特性,使其特别适合进行大量科学数据的存储和操作,如它支持非常多的数据类型,灵活,通用,跨平台,可扩展,高效的 I/O 性能,支持几乎无限量(高达 EB)的单文件存储等,详见其官方介绍:https://support.hdfgroup.org/HDF5/ 。

HDF5 结构

HDF5 文件一般以 .h5 或者 .hdf5 作为后缀名,需要专门的软件才能打开预览文件的内容。HDF5 文件结构中有 2 primary objects: Groups 和 Datasets。

Groups 就类似于文件夹,每个 HDF5 文件其实就是根目录 (root) group'/',可以看成目录的容器,其中可以包含一个或多个 dataset 及其它的 group。

Datasets 类似于 NumPy 中的数组 array,可以当作数组的数据集合 。

每个 dataset 可以分成两部分: 原始数据 (raw) data values 和 元数据 metadata (a set of data that describes and gives information about other data => raw data)。

+-- Dataset
|  +-- (Raw) Data Values (eg: a 4 x 5 x 6 matrix)
|  +-- Metadata
|  |  +-- Dataspace (eg: Rank = 3, Dimensions = {4, 5, 6})
|  |  +-- Datatype (eg: Integer)
|  |  +-- Properties (eg: Chuncked, Compressed)
|  |  +-- Attributes (eg: attr1 = 32.4, attr2 = "hello", ...)
|

从上面的结构中可以看出:

  • Dataspace 给出原始数据的秩 (Rank) 和维度 (dimension)
  • Datatype 给出数据类型
  • Properties 说明该 dataset 的分块储存以及压缩情况
  • Chunked: Better access time for subsets; extendible
  • Chunked & Compressed: Improves storage efficiency, transmission speed
  • Attributes 为该 dataset 的其他自定义属性

整个 HDF5 文件的结构如下所示:

+-- /
|  +-- group_1
|  |  +-- dataset_1_1
|  |  |  +-- attribute_1_1_1
|  |  |  +-- attribute_1_1_2
|  |  |  +-- ...
|  |  |
|  |  +-- dataset_1_2
|  |  |  +-- attribute_1_2_1
|  |  |  +-- attribute_1_2_2
|  |  |  +-- ...
|  |  |
|  |  +-- ...
|  |
|  +-- group_2
|  |  +-- dataset_2_1
|  |  |  +-- attribute_2_1_1
|  |  |  +-- attribute_2_1_2
|  |  |  +-- ...
|  |  |
|  |  +-- dataset_2_2
|  |  |  +-- attribute_2_2_1
|  |  |  +-- attribute_2_2_2
|  |  |  +-- ...
|  |  |
|  |  +-- ...
|  |
|  +-- ...
|

一个 HDF5 文件从一个命名为 "/" 的 group 开始,所有的 dataset 和其它 group 都包含在此 group 下,当操作 HDF5 文件时,如果没有显式指定 group 的 dataset 都是默认指 "/" 下的 dataset,另外类似相对文件路径的 group 名字都是相对于 "/" 的。

安装

pip install h5py

Python读写HDF5文件

#!/usr/bin/python
# -*- coding: UTF-8 -*-
#
# Created by WW on Jan. 26, 2020
# All rights reserved.
#

import h5py
import numpy as np

def main():
  #===========================================================================
  # Create a HDF5 file.
  f = h5py.File("h5py_example.hdf5", "w")  # mode = {'w', 'r', 'a'}

  # Create two groups under root '/'.
  g1 = f.create_group("bar1")
  g2 = f.create_group("bar2")

  # Create a dataset under root '/'.
  d = f.create_dataset("dset", data=np.arange(16).reshape([4, 4]))

  # Add two attributes to dataset 'dset'
  d.attrs["myAttr1"] = [100, 200]
  d.attrs["myAttr2"] = "Hello, world!"

  # Create a group and a dataset under group "bar1".
  c1 = g1.create_group("car1")
  d1 = g1.create_dataset("dset1", data=np.arange(10))

  # Create a group and a dataset under group "bar2".
  c2 = g2.create_group("car2")
  d2 = g2.create_dataset("dset2", data=np.arange(10))

  # Save and exit the file.
  f.close()

  ''' h5py_example.hdf5 file structure
  +-- '/'
  |  +--  group "bar1"
  |  |  +-- group "car1"
  |  |  |  +-- None
  |  |  |  
  |  |  +-- dataset "dset1"
  |  |
  |  +-- group "bar2"
  |  |  +-- group "car2"
  |  |  |  +-- None
  |  |  |
  |  |  +-- dataset "dset2"
  |  |  
  |  +-- dataset "dset"
  |  |  +-- attribute "myAttr1"
  |  |  +-- attribute "myAttr2"
  |  |  
  |  
  '''

  #===========================================================================
  # Read HDF5 file.
  f = h5py.File("h5py_example.hdf5", "r")  # mode = {'w', 'r', 'a'}

  # Print the keys of groups and datasets under '/'.
  print(f.filename, ":")
  print([key for key in f.keys()], "\n") 

  #===================================================
  # Read dataset 'dset' under '/'.
  d = f["dset"]

  # Print the data of 'dset'.
  print(d.name, ":")
  print(d[:])

  # Print the attributes of dataset 'dset'.
  for key in d.attrs.keys():
    print(key, ":", d.attrs[key])

  print()

  #===================================================
  # Read group 'bar1'.
  g = f["bar1"]

  # Print the keys of groups and datasets under group 'bar1'.
  print([key for key in g.keys()])

  # Three methods to print the data of 'dset1'.
  print(f["/bar1/dset1"][:])    # 1. absolute path

  print(f["bar1"]["dset1"][:])  # 2. relative path: file[][]

  print(g['dset1'][:])    # 3. relative path: group[]
  # Delete a database.
  # Notice: the mode should be 'a' when you read a file.
  '''
  del g["dset1"]
  '''

  # Save and exit the file
  f.close()

if __name__ == "__main__":
  main()

相关代码示例

创建一个h5py文件

import h5py
f=h5py.File("myh5py.hdf5","w")

创建dataset

import h5py
f=h5py.File("myh5py.hdf5","w")
#deset1是数据集的name,(20,)代表数据集的shape,i代表的是数据集的元素类型
d1=f.create_dataset("dset1", (20,), 'i')
for key in f.keys():
  print(key)
  print(f[key].name)
  print(f[key].shape)
  print(f[key].value)

输出:

dset1
/dset1
(20,)
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

赋值

import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w")

d1=f.create_dataset("dset1",(20,),'i')
#赋值
d1[...]=np.arange(20)
#或者我们可以直接按照下面的方式创建数据集并赋值
f["dset2"]=np.arange(15)

for key in f.keys():
  print(f[key].name)
  print(f[key].value)

输出:

/dset1
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
/dset2
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]

创建group

import h5py
import numpy as np
f=h5py.File("myh5py.hdf5","w")

#创建一个名字为bar的组
g1=f.create_group("bar")

#在bar这个组里面分别创建name为dset1,dset2的数据集并赋值。
g1["dset1"]=np.arange(10)
g1["dset2"]=np.arange(12).reshape((3,4))

for key in g1.keys():
  print(g1[key].name)
  print(g1[key].value)

输出:

/bar/dset1
[0 1 2 3 4 5 6 7 8 9]
/bar/dset2
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]

删除某个key下的数据

# 删除某个key,调用remove
f.remove("bar")

最后pandsa读取HDF5格式文件

import pandas as pd
import numpy as np

# 将mode改成r即可
hdf5 = pd.HDFStore("hello.h5", mode="r")
# 或者
"""
hdfs = pd.read_hdf("hello.h5", key="xxx")
"""

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

快活林资源网 Design By www.csstdc.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
快活林资源网 Design By www.csstdc.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?